
Centroid CNC PLC and CNC functions Programming Manual

CNC12 v5.x+
Oak, Hickory, Allin1DC, Acorn, AcornSix, and MPU11 platforms.

Page 1

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Table of Contents

Introduction..4
Resources and Tools...9
Conventions Used in this Manual..11
Compiling a PLC Program...12
PLC Program Statistics..12
Language..13
Programming Conventions..13
Defining Variables..14
Data Types..14
Keywords...18
Operators..23
Standard PLC Program Layout..32
Defining Variables..32
Initial-Condition Setup...32
Internal PLC Fault and Software Running Checking..33
Jog Panel and Keyboard Jogging...34
Axis Enable..34
Fiber/Wire Connection Checking...34
LubeTimers..37
Feedrate Override...39
Spindle Functionality...39
MPG Operation..40
Probe Protection...43
PLC Optional Sections...44
Debounce or Invert Inputs..44
Setting Inputs High or Low for Testing...49
Compiler Errors..52
Warnings..52
General Errors..52
Syntax Errors..53
Application Examples..60
Toggle an Output Every Second..60
Aux Key Jogging...60
Aux Key Override of M-Code...60
Wait One Second Before Jogging on Key Press..60
Interpret Enter Key as Cycle Start in MDI*...60
Count Machine On Time..61
Custom M-Codes...62
Using M94/M95 Bits...62
Using One M94/M95 Bit and a Parameter...62
Customizing Standard M-Codes..62
Troubleshooting and Changing PLC Programs...63
Write Down and Think Through Changes to the Program..63
PLC Diagnostic Screen..63
PLC Bit-State Dump..63
DUMP..63
Echo to a Memory Bit..63

Page 2

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Use Stages..63
Communication In/Out Faults..63
PLCBus..64
Appendix A: Example PLC program...65
ALLIN1DC DC system example...65
Appendix B: Jog Panel Mapping...98
JogPanel Inputs and Outputs..98
Appendix C: Keyboard Jog Mapping..99
Notes on Keyboard Jogging...99
Keyboard Key Numbering Table...100
Appendix D: System Variables..101
System Variable Types...101
Notes on Certain System Variables..101
Appendix E: PLC I/O Location...120
ALLIN1DC..120
DC3IOB...120
GPIO4D...120
PLC Expansion..121
Appendix F: G/M-Code User/System Variable..123
Appendix G: What's New in CNC11...127
There is Only One PLC Program...127
The PLC Program has the Final Word...127
Spindle Speed DAC Command..127
Direct Control of and Responsibility for Jogging..127
Compiler/Language Differences..127
Appendix H: Definitions of Unobvious Words..129
Bit...129
Integer Number..129
Floating-point Number...129
Range...129
Precision...129
Data Type...129
Define/Declare...129
Variable..129
Constant...130

Page 3

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Introduction
The Centroid PLC or Programmable Logic Controller is responsible for controlling outputs primarily based upon
the state of inputs, but also for controlling outputs based upon time. The Centroid PLC Program itself is the logic
that is written to describe how the Centroid CNC PLC reacts to the Inputs and when to cause Outputs to turn on
or off. Centroid’s PLC programming Language and Features allow much more control and capability than just a
basic i/o ladder logic setup. Centroid’s PLC programming language supports control of advanced CNC control
functions which allow extensive customization of the CNC12 software to meet a wide variety of applications.
Centroid PLC programming language, compiler and its related real time Logic Analyzer the “PLC Detective” and
PLC diagnostic menu are free tools provided and maintained by Centroid for our customers.

Note: Many common CNC functions and actions can be performed with simple CNC Macro programming that do
not require any PLC program editing to do these function(s). Newbies often confuse or assume that the CNC
function that they want to create or modify must be done in the PLC program so, before jumping to that
conclusion be sure to review Centroid’s advanced Macro feature set by reading this “Introduction to Centroid
CNC12 Macro Programming” guide.
https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/
centroid_cnc_macro_programming.pdf and reviewing the relevant sections in the Mill and Lathe operator
manuals

“Stock” tested and working PLC programs for common CNC controller configurations are provided by Centroid
and are included with the CNC12 software installer. Each “Stock” PLC Program has a corresponding CNC
control system Hookup Schematic. These schematics can be found on the schematics download page. Here.
https://www.centroidcnc.com/centroid_diy/schematics/pbrowse.php

Use the search to find and sort, for example type in “OAK ATC” to see all the Oak ATC schematics.

When running the CNC12 software installer it will ask you to choose a PLC program to install from a list of
Centroid provided PLC programs.

These “stock” PLC programs are tested working programs are for use with Oak, Allin1DC, MPU11, RedOak,
Hickory systems. These common machine configurations PLC programs allow for easy fast CNC control setup
and commissioning. Load the PLC program you want, wire it according to the schematic, configure the machine
parameters and you are up and running. Follow the instructions in the Oak and Allin1dc installation manuals for
step by step setup information when using a stock PLC program.

Page 4

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

https://www.centroidcnc.com/centroid_diy/schematics/pbrowse.php
https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/centroid_cnc_macro_programming.pdf
https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/centroid_cnc_macro_programming.pdf

Page 5

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

If you wanted to view or edit any of the source files for the stock Centroid provided PLC programs they are
included with the CNC12 installer in a folder called “mpuplcprograms”

Page 6

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Acorn and AcornSix CNC Control systems use the same Centroid PLC programming language as all Centroid
CNC controllers but, the Acorn/AcornSix CNC12 uses a CNC control configuration Wizard which creates the
PLC program for the CNC control based on the Input / Output selections made by the user in the Wizard input
and output menus! In essence the Wizard creates a ‘custom’ PLC program based on user selections from a list
of canned PLC functions. A wide variety of ‘canned’ PLC functions are select-able from a list in the Wizard
which are drag and drop assigned to any input or output, the Wizard will then create a PLC program using the
users selections.

Acorn PLC creation Wizard Input Menu

Page 7

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Acorn PLC creation Wizard Output Menu

The Acorn Wizard uses a Universal Template PLC source program “acorn_universal_template.src” and creates
the ‘custom’ Acorn PLC program based on the user selections in the Wizard and the PLC code in the universal
template. Source code for the Wizard generated PLC programs appear in the root cncm or cnct directory:
‘acorn_mill_plc.src” etc.. The Acorn Template PLC source code is located cncm\resources\wizard\default\plc\
acorn_universal_template.src
When hand editing an Acorn PLC program be sure to turn off the automatic PLC program generation feature of
the Wizard so the Wizard does not overwrite your work. The “Custom PLC” in use selection can be found in the
Wizard preferences menu.

Page 8

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

This manual assumes basic familiarity with Centroid’s PLC programming. Not every detail is explained. Centroid
has created Centroid PLC programming Video series that is available on YouTube for newbies. If you are just
starting out with learning Centroid PLC Programming start with this video series. Below is the link to the
YouTube Centroid PLC programming playlist.
https://www.youtube.com/playlist?list=PLXhs2C5No0_gFS_RmKNo7hii2WKIedQlQ

Videos in the PLC programming playlist.

Video 1 – Notepad++ Setup Downloading and installing Notepad++.
https://notepad-plus-plus.org/downloads/
Following TB294 to setup Notepad++
https://www.centroidcnc.com/dealersupport/tech_bulletins/uploads/294.pdf

Video 2 – PLC Introduction What is a Centroid PLC program? What does a Centroid PLC program
do? What kind of stuff can you control with it? Centroid PLC program language. Files associated with
Centroid PLC.

Video 3 – Installing CNC Software and PLC Program Installing/Updating CNC12 software. Installing
PLC program. Standard Centroid PLC programs.

Video 4 – PLC Definitions – Part 1 PLC program header. Adding comments/commenting lines of logic.
Constant definitions used for custom PLC messages.

Video 4 – PLC Definitions – Part 2 Inputs, outputs, and memory bits. Probe, MPG, and jog panel
connector I/O. System variables CNC-to-PLC PLC-to-CNC. Skin events Custom macros – M94/M95
Words, floating words, one-shots, timers, and stages

Video 5 – PLC Program Logic IF THEN statement. Logic AND, OR, and XOR. Logic Not(Inverse), Is
equal to, and Is not equal to. SET, RST, and coils. Bit-based parameters.

Video 6 – PLC Tools PLC Diagnostic menu. Inverting inputs. Forcing outputs on and off.

https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/
cnc12_PLC_diagnostic_screen.pdf

PLC Detective.
https://www.centroidcnc.com/downloads/centroid_PLC_detective_quickstart.pdf Logic analyzer.

Video 7 – Turning Output On-Off Using Input Logic to turn an output on and off based on the state of a
physical input Using SET and RST commands Using the coils - ()

Video 8 – Turning Output On-Off Using AUX button – Part 1 and 2 Logic truth table. Using one-shot.
Logic to turn an output on and off whenever an auxiliary button is pressed. If the output is off and the
button is pressed, it will turn the output on. If the output is on and the button is pressed, it will turn the
output off. Have the LED associated with auxiliary button follow the state of the output.

Video 9 – Turning Output On-Off Using Custom Macro– Part 1 Macro definition. Macro header. Skip
macro when in Search or Graph mode. System variable table in operator’s manual. MDI. Use 1 macro
to turn output on and another macro to turn it off. Tie macro to auxiliary button. Use 1 macro to turn
output on, wait some time, and then turn the output off. Use 1 macro to turn output on, wait some time,
then wait for an input to close, and then turn the output off. Chapter 9 – Turning Output On-Off Using
Custom Macro– Part 2 Use timer that is defined in the PLC program to place the system in a fault
state if the input isn’t set. Use timer that is based off of a parameter value to place the system in a fault
state if the input isn’t set. Creating custom PLC message.

Video 10 – PLC Logic For Safety Items Door Interlock. Light curtain. Place system into a fault state
when running a program. Prevent a program from running.

Page 9

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

https://www.centroidcnc.com/downloads/centroid_PLC_detective_quickstart.pdf
https://www.centroidcnc.com/downloads/centroid_PLC_detective_quickstart.pdf
https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/cnc12_PLC_diagnostic_screen.pdf
https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/cnc12_PLC_diagnostic_screen.pdf
https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/cnc12_PLC_diagnostic_screen.pdf
https://www.centroidcnc.com/dealersupport/tech_bulletins/uploads/294.pdf
https://notepad-plus-plus.org/downloads/
https://notepad-plus-plus.org/downloads/
https://www.youtube.com/playlist?list=PLXhs2C5No0_gFS_RmKNo7hii2WKIedQlQ

Resources and Tools

Notepad++
https://notepad-plus-plus.org/downloads/

Configure Notepad++ for PLC editing and CNC use
https://www.centroidcnc.com/dealersupport/tech_bulletins/uploads/294.pdf

Introduction to PLC programming Video Series

https://www.youtube.com/playlist?list=PLXhs2C5No0_gFS_RmKNo7hii2WKIedQlQ

PLC Detective

https://www.centroidcnc.com/downloads/centroid_PLC_detective_quickstart.pdf

PLC Diagnostic menu (virtual input/output LEDS)
https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/cnc12_PLC_diagnostic_screen.pdf

Free Tech Support
https://centroidcncforum.com/index.php

Paid one-on-one Factory Technician Tech Support / PLC Programming.

https://www.centroidcnc.com/centroid_diy/purchase_tech_support.html

Links the latest Mill (Router) CNC12 Operator Manual and the Lathe CNC12 Operator Manual
can be found here. https://centroidcncforum.com/viewtopic.php?f=60&t=3397

Page 10

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

https://centroidcncforum.com/viewtopic.php?f=60&t=3397
https://www.centroidcnc.com/centroid_diy/purchase_tech_support.html
https://centroidcncforum.com/index.php
https://www.centroidcnc.com/centroid_diy/downloads/acorn_documentation/cnc12_PLC_diagnostic_screen.pdf
https://www.centroidcnc.com/downloads/centroid_PLC_detective_quickstart.pdf
https://www.youtube.com/playlist?list=PLXhs2C5No0_gFS_RmKNo7hii2WKIedQlQ
https://www.centroidcnc.com/dealersupport/tech_bulletins/uploads/294.pdf
https://notepad-plus-plus.org/downloads/

This manual is for anyone trying to change or write a PLC program on a Centroid CNC11 or CNC12 system. A
CNC11 system is one that is based on MPU11 hardware, while a CNC12 system is one that is based on MPU12
hardware. The Centroid CNC11 software works with a CNC11 system. The Centroid CNC12 software works with
both a CNC11 and a CNC12 system.

Centroid’s PLC programming Language is the same for all of Centroid’s current CNC platforms including but not
limited to: Oak, Allin1DC, MPU11, Acorn, AcornSix, Hickory. Some PLC functionality and capability differences
between these platforms is defined by the hardware feature set of that CNC control board there is no limitation or
differences in the PLC programming language itself.

There are some definitions in Appendix H, but it is intended to clarify where there may be confusion between
CNC11/12 PLC program meaning and a more general meaning. If you are unsure of what you are doing, please
contact Tech. Support at support@centroidcnc.com or make a post on the Centroid Tech Support forum and ask
questions.

When modifying PLC programs, it is considered good practice to regularly make backups. Always make
a report.zip (‘create report’ in the CNC12 utility menu) and store it in at least one location in case the
program change needs to be reverted.

The manual explains the components that can be used to make a PLC Program and goes over the standard
parts of PLC programs. There are several appendices including sample programs, detailed key mappings,
differences in CNC10 and CNC11/12 PLC programs, and errors associated with the compiler. If you are
experienced with CNC10 PLC programs be sure to read Appendix H about the differences between CNC10 and
CNC11/12.

Page 11

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

mailto:support@centroidcnc.com

Conventions Used in this Manual
There are several text conventions used in this manual. The following list explains the most common ones.

• Code from PLC programs including System Variables and the various data types are in Consolas font
at 10 pt size. An example is SV_PC_VIRTUAL_JOGPANEL_ACTIVE.

• Keyboard Keys are in Arial font at 12 pt. size and bold. An example is ALT-Q.

• Commands entered in the command line of a prompt window are in italicized Consolas font
at 11 point size. An example of this is mpucomp ProgramName.src mpu.plc.

• On and SET are interchangeable, as are Off and RST.

• System Variable may be written as SV, which is interchangeable and means the same thing.

• PLC Program and program are used interchangeably and mean the same thing.

• Data Type and type are used interchangeably and mean the same thing.

• When a specific name for a Data Type is helpful it is used, but typically the direct name is used to
remove confusion about what type is being used in a given example.

• Names of Data Types such as Memory Bits and Outputs are capitalized.

• Binary data is written in this document from Most Significant Bit (Msb) to Least Significant Bit (Lsb) on a
Left to Right order when explaining how bits are moving around. This follows the typical convention in
programming. Note that the PLC program reads and writes pure Binary data from Left to Right as well,
but goes from Lsb to Msb. See BTW and WTB for more information.

• From a general PLC programming viewpoint, the term CNC11 software is the same as CNC12 software.
The term “CNC software” denotes either CNC11 or CNC12. The same applies for MPU11 and MPU12,
with the term “MPU hardware” denoting either MPU11 or MPU12 based hardware.

Page 12

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Compiling a PLC Program
The source code which you write or change must be converted to the format that CNC software uses internally.
This is accomplished by compiling the program. The compiler is called mpucomp which is short for MPU
compiler. The syntax for compiling a program is mpucomp.exe ProgramName.src mpu.plc. If the filename
contains spaces, it must be surrounded with quotes. The first file is the source code (a text file) and the second
file is the name of the output file (a text file). CNC software looks for a file named mpu.plc to load and execute as
the PLC program, so the output file must be named exactly 'mpu.plc, including the fact that it is is all lower
case letters. Once the program is compiled successfully, the system should be powered off completely and
powered back on again for the changes to take full effect. CNC software will display a warning when it detects
the loading of a changed PLC program. Whether or not you can proceed without side effects depends upon what
has been changed in the PLC program and the current state of the PLC system. When in doubt, power off.

PLC Program Statistics
The PLC program is constrained by certain factors and limits. The following list enumerates some of the more
important ones. Pressing ALT-I on the main menu causes the Live PLC Diagnostic screen to appear. It shows
the state of Inputs, Outputs, Stages, Memory Bits and Words as well as the Time that is being taken by
execution of the PLC program.

• Presently there is a limit of about 80 Inputs and Outputs using a GPIO4D and four PLC1616ADD
boards. DC3IOB systems can achieve a bit more than this. There is a hard system maximum of 768
Inputs and 768 Outputs in CNC software and MPU hardware. This limit does not apply to IO related to
the Jog Panel.

• There are many powerful features that take a long time to execute and thus should be used sparingly.
Usage of them is detailed below and recommendations against using them are included in the Operators
section.

Page 13

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Language

Programming Conventions
It is helpful when debugging and reading a program to know what type a variable is without having to constantly
search through the multiple uses of a name to get to the definition at the top of the program. Following is a table
of basic suggestions of ways the types can be named to reduce confusion. Inputs and Outputs are typically
named to indicate the purpose rather than applying an extra label to them. The basic idea is to put something
like the code specific type name at the end of the declaration. Whether you put an underscore between the
name and type, add the letters in all Caps, or capitalize the first letter is up to you.

Type Example Name Comments

Constants AXIS_FLT_CLR_MSG All Caps, end with MSG

Input EstopOk

Output LubeOut

Memory Bit SpinFault_M Alternatively use M or Mem

Word Axis3FiberOk_W Alternatively use W or Word

Double Word BigCounter_DW

Floating-point Word SpindleRangeMultiplier_FW

Double-Floating-point Word PreciseNumber_DFW

Timer Fault_Clear_T Alternatively use Timer

One-Shot SlowFast_PD PD is Positive Differential, meaning
rising edge

Stage InitialStage Alternatively use STG

Fast Stage CountSomething_FSTG

PLC to CNC11 System Variable
DoToolCheck

SV_PLC_* System variables are not
named, so the function is prefixed
with an action word 'Do' or 'Select'
and named for the function it tells
CNC11 to do.

Keyboard Keys Kb_a Kb is short for Keyboard

M-Codes M6 Start with Capital M

While technically no Stages are required to be explicitly used for a program to compile, they should be used. The
benefits include allowing debug of small sections of code by turning off other stages, reduced Program running
time by running only certain things all the time, and compartmentalizing code for easier comprehension.

The compiler is not case sensitive so EstopOK, ESTOPOK, EsToPoK, and estopok are all references to the
same Input. Convention states that capitalization be kept uniform for variable references, but it is not required by
the compiler.

All lines should end after 79 columns to prevent printing issues and ensure readability on smaller monitors.

Stage names in the program are surrounded on lines above and below with a full width line of equal signs to
designate the start of a stage. CamelCase is used to name Stages and the same naming should be used in the

Page 14

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

program. Type the Stage name 20 columns from the left.

Section titles within a stage have a full width line of minus signs, and also include the name of the section in that
line or not as preference dictates. The name should start after 5 minus signs either way and optionally fill out the
rest of the line with minus signs.

;-----INPUT DEFINITIONS---

Section explanations longer than about 5 lines should have a full width line of minus signs before and after the
section to show it is a block of comments. Also every line between the two bracketing lines should have a semi-
colon to show it is part of the explanation.

Section explanations shorter than about 5 lines should just have a semi-colon in front of each line with no
spaces.

;INP769 - INP784 encompass the MPU11 onboard input connections

;which are generally used for MPG and probing functions.

System Variables with names like SV_STOP should not be redefined to a Memory Bit in order to avoid
obfuscation. There are some System Variables where the reading or writing of them should only occur once in a
PLC program to prevent race conditions. In these cases, you will need a similarly named PLC variable, and a
convention is to include the word temp or shadow in the name. In some debugging scenarios, a similarly named
variable should include an ‘Echo’ prefix or suffix.

In the definition section the IS should line up with all others above and below in the section, not with the entirety
of the defines. This increases readability while maximizing comment space. There should be two spaces
between the longest variable name in the section and the IS keyword. Also, if possible, line up the comments
after the definition.

Use only spaces in the PLC program, never use tabs unless you can figure out how to replace tabs with spaces
in your editor. It is helpful to show non-printing characters as well to make sure trailing spaces are not causing
extra wrapping of text.

Use only mono-spaced fonts such as Courier, Courier New, Consolas and MS Mincho.

The beginning of the actual program and end of the defines should be visibly demarcated with 5 blank lines
before and after a title indicating the start of the program.

;\/\

;-----Program Start

;\/\

Defining Variables
The names of variables used in the PLC program are defined at the top of the PLC program only. Any definition
after the first IF...THEN statement will cause an error at compile time. Any label may be used to refer to any of
the data types, but there are conventions to make it easier to determine the type of data assigned to a variable.
Example syntax for defining a variable is:

EstopOk IS INP11
Lube IS OUT2

In this example, EstopOk is the name given to the INP data type. Similarly, Lube is the name
given to the OUT data type. In both cases, the keyword IS is part of the syntax for defining a
name.

Page 15

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Data Types
The kind of information that a variable can hold is defined at compile time by the data type when it was declared.
All of the types below can be used in a PLC program. Typically Words and Floating-point Words have enough
precision to achieve the desired results versus Double Words and Double Floating-point Words.

Data type Range Notes

INP INP1-INP1312 physical inputs mapped to hardware

OUT OUT1-OUT1312 physical outputs mapped to hardware

MEM MEM1-MEM1024 internal memory bits

STG STG1-STG256 STG1 is set on at startup

FSTG FSTG1-FSTG256 fast stages

T T1-T128 32-bit timers, only T1-T64 available prior to v4.22

PD PD1-PD256 One-shot (positive differential)

W W1-W128 32-bit signed integers
W1-W88 available for PLC Detective and G-code variables

DW DW1-DW128 64-bit signed integers
DW1-DW22 available for PLC Detective and G-code variables

FW FW1-FW128 32-bit floating point variables
FW1-FDW44 available for PLC Detective and G-code variables

DFW DFW1-DFW128 64-bit floating point variables
DFW1-DFW22 available for PLC Detective and G-code variables

Important Note
It is critical to understand when specific Data Types are updated during the execution of a PLC program. The
execution of a PLC program occurs approximately 1000 times a second, but only PLC program code inside a
fast stage (FSTG type) or outside of any stage is actually executed 1000 times a second. PLC program code
inside a regular stage (STG type) is executed 50 times a second. The execution of a PLC program from top to
bottom as it has been written is referred to as a PLC “pass”.

A question that quickly emerges when writing PLC programs is, “If I change the value of a variable in the PLC
program, when does it actually take effect?” The answer to this question is that it depends upon the data type
being changed. Timers, Inputs and Outputs are all buffered at the beginning of the program. This means that a
snapshot is taken of the state of them and that image does not change during the pass of the PLC program.
In other words, Timers have the same value at the start of the pass as they do at the end. The same is true for
Inputs and Outputs as far as the real-world physical state is concerned. The snapshot of the Inputs never
change, but the image of the Outputs can be changed on any line and that brings us to the other category of
when things update. Memory Bits, all Words, One-Shots, both kinds of Stages, System Variables, and the image
of the Outputs are changed immediately and on the next line of the program will be at the value they were
assigned to on the previous line.

Another important thing to note is that the Live PLC Diagnostic screen (ALT-I) does not show every transition of
every variable. What you see is a snapshot of PLC data that is updated about 20 times a second.

Page 16

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Constant Definitions
It is often easier to remember a name for an error rather than the number associated with it. Defining a Constant
allows for this ease of use. By convention Constants are put before Variable Definitions, but they can be put
anywhere before the first IF statement. Typically, Constants are used for PLC message numbers, but they can
be used for anything. Math is allowed when defining constants to help avoid mistyping a number. Parentheses
are allowed to force correct math, but only for Integer values. Floating-point numbers cannot have math done on
them or be used to create them. See the Syntax Errors section.

PI IS 3.1415926535897932384626433832795

ASYNC IS 2

SYNC IS 1

MULTIPLIER IS 256

FAULT_MSG IS (SYNC+5*MULTIPLIER)

Input – INP
Inputs are physical switches or buttons that can be either on or off. When defining an Input, it is written as
Limit_Switch IS INP2. Inputs can be logically combined with Outputs, Memory Bits, Timers, One-Shots,
Stages, Fast-Stages and System Variables that are bits using Logical Operators, but not Relational Operators.
Limit switches, Jog Panel keys and Inverter signals such as fault or at speed are all examples of inputs. Analog
voltage comes into the system, but it must be read into any of the Word type variables.

Page 17

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Output – OUT
Outputs are physical, real-world outputs such as relay contacts, relay driver signals, or analog signals that can
be on or off. Analog voltages are converted from Bits in the PLC program to analog voltage at the header. They
can be used to control other relays, lube pumps, spindle enable, inverter analog speed control, coolant, Jog
Panel LEDs, etc. The standard way of specifying an output is Lube IS OUT2 or AutoCoolantLED IS JPO21.
Outputs can be logically combined the same way as Inputs.

Memory Bit – MEM
Memory Bits can be on or off and cannot directly affect anything outside the PLC program. These Bits are often
used to make logic easier to read by combining many repetitive checks or keystrokes into one variable. MEM
Bits are also used for debugging to store whether transient signals have occurred, whether to invert inputs based
on parameter 178, etc. Memory Bits can be logically combined to other Bit type Variables with Logical Operators,
but not Relational Operators.

Word – 32-bit – W
Words are Integer numbers that can be used to store error codes, parameter values, and System Variables that
are Word sized themselves. Words are defined like Error_Code IS W10. Only the 12 words are visible on the
Live PLC Diagnostic screen at one time. They can be compared with other Word types, System variables that
are Integer numbers rather than one bit, and Timers. Relational Operators are allowed on any Word type
variable, but Logical Operators are not. Doing a Relational comparison produces a result that can be used in a
Logical Operator, however. An example of this is IF (W1 > W2) || MEM1 THEN SET OUT6. This statement tests
whether W1 is greater than W2 first. If that is true or MEM1 is true then the output is turned on. Words can hold
values from -2147483648 to 2147483647.

Double Word – 64-bit – DW
Double Words are Integer numbers just like Words, but can hold values from -9223372036854775808 to
9223372036854775807. A Double Word is defined like BigNumberDW IS DW3. For most PLC programs, Double
Word types are not necessary. Double Words are otherwise exactly the same in usage as Words.

Floating-point Word – 32-bit – FW
Floating-point Words are real numbers that can store fractional values from 2^-149 to 2^129. It is typically
precise enough for any operation in a PLC program. It is defined like SpindleDACFW IS FW1. Precision
problems can occur if comparing very very large and very very small numbers, but typically this is not a concern.
Floating-point Words have the same comparison ability as Words.

Double-Floating-point Word – 64-bit – DFW
Double-Floating-point Words are real numbers that can store fractional values from 2^-1074 to 2^1022. They are
more precise and can compare bigger numbers with smaller compared to Floating-point Words. In general is is
not advised to use this type at all due to significant time required to do any calculations. The definition of a
Double-Floating-point Word is PreciseNumberDFW IS DFW1. DFWs are compared exactly like Words.

Timer – 32-bit – T
Timers are counters with the special ability to be compared with both Relational and Logical Operators. This
means that you can check IF T1 THEN SET OUT1 to see if the Timer has reached its set point or IF T1 > 1000
THEN SET OUT2 to see if the Timer has counted past 1000 milliseconds (one second). Timers are initialized with
a 32-bit positive Integer number that is interpreted as the number of milliseconds to count before evaluating to
true when checked with Logical Operators.

The value is typically stored in the Timer during the InitalStage. To start a Timer counting use SET T1. To
reset the Timer so that it is waiting to count again use RST T1. Note that you do not need to store a value into a

Page 18

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Timer each time it is RST unless you want to change the value to which it counts.

Timers evaluate to true after reaching the stored time until they are reset. The actual count of the Timer
continues to climb until it gets to about 10 seconds before the max value that Timers can hold. This means that
Timers can be checked to see if they are over a certain value with Relational Operators.

Timers can count up to 2,147,473,646 milliseconds (24 days, 20 hours, 31 minutes, and 13.646 seconds). Be
aware that if you are trying to time something longer than that you will need to come up with a scheme for
tracking the rollover. A simple option for counting days is to set the Timer to 1 day worth of ms (24 hrs. * 60 min. *
60 s = 86400000 ms). When the Timer expires, increment a Word day counter and then RST and SET the Timer
to begin counting again. See Application Examples for how to setup a Timer for counting days. The following
example sets the Timer to one second then SETs the Timer if MEM1 is closed. When T1 counts to 1000, an
Output is turned on and the Timer is RST. If the Memory Bit is set next time through the PLC program the Timer
will be SET again. The first time the Timer value has counted past 10 a Memory Bit will be turned on.

T1 = 1000 ;Set the value that the timer counts up to 1 second

IF MEM1 THEN SET T1 ;start the Timer counting

IF T1 THEN RST OUT2, RST T1 ;if 1 second has elapsed turn off the output and reset the
 ;timer so it can be started again.

IF T1 > 10 THEN SET MEM50 ;if the timer has counted past 10 ms set MEM50

One-Shot – PD
One-Shots or Positive Differentials are used to detect the first rising edge of an event occurring. A One-Shot can
only be turned on and off using a Coil. Because of this a One-Shot should only ever be SET/RST on one line of
the PLC Program. It can be checked anywhere, but not SET/RST. Once the PD has been SET by the IF test, the
conditional section must evaluate to false and thus RST the PD before it can be used again. This means that you
cannot hold a button down and cause the One-Shot to trigger more than once. Using this in combination with
Debounce allows safer detection of key presses to prevent multiple actions when only one is intended. One-
Shots are often used on Jog Panel keys and M-Codes. One-Shots may not be desired in certain circumstances
such as the Override +/- buttons for Spindle Speed. Typically one wants to hold down the button and have the
Override value change as long as the button is held down. An example definition and usage of a One-Shot
follows.

KeyPressPD IS PD1 ;define the One-Shot

IF JPI1 THEN (KeyPressPD) ;if Jog Panel Input 1 is pushed, set the One-Shot

If KeyPressPD THEN SET MEM300 ;if the One-Shot is set, turn on a memory bit

Stage – STG
Stages are useful in many ways. First, they are used to break up different sections of the program to allow easier
debugging and testing. Conventional programming dictates that there is at least an InitialStage and a
MainStage in any PLC program, but Stages are not required to be explicitly used at all. Turning a Stage on and
off is just like the process for Outputs.

IF 1==1 THEN SET STG1 ;Turn on a Stage all the time

IF M6 THEN SET ATC_Main_Stage ; turn a Stage on when a tool change is called

When a Stage is RST the PLC executor does nothing with the logic inside the Stage. This means that whatever
Variables are SET or RST when the Stage itself is RST maintain that state unless they are modified somewhere
else in the program.

Warning: No checks are made against resetting any stages. It is possible to RST every stage and have nothing
executed in the PLC program. This requires a system power off and reboot.

The InitialStage is often used to setup any timers used and the state of tools for ATC machines. At the end of
the InitialStage a JMP should be called to the MainStage. The InitialStage should never be SET again. To
troubleshoot a problem, Stages could be turned off to narrow down the problem section. Also, Stages are usually

Page 19

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

used to break up the steps of a tool change sequence and various M-Codes so that they are not executed or
checked every time through the PLC program and for debugging. Stages are executed at the standard rate of
PLC program execution which is 50 times per second.

Warning: Typically Coils should not be used in Stages that are turned on and off, especially if you come from a
CNC10 PLC programming background. This is because CNC10 PLC typical coil behavior will not occur if a
Stage is off. This means that One-Shots should also not be used in Stages that may be turned off. Odd effects
can occur with One-Shots in Stages if you do not know what to expect. If, for example, a One-Shot is used to
RST a Stage, the One-Shot will not be reset the next time through the PLC program, but will instead wait for the
next time the Stage is SET and the Coiled One-Shot is scanned over. This will, instead of setting the One-Shot as
might normally be expected, cause the One-Shot to be RST finally and then require the One-Shot to be triggered
again in the next PLC Program pass, if the Stage is still SET.

Timer counting is not affected by a Stage being RST. This means that if you SET a Timer in a Stage and then RST
the Stage the Timer still counts and can be checked outside of the Stage and the expiration of the Timer will be
accurate.

If you want to use a One-Shot to exit a stage, say from a button push, then you should put the One-Shot in coils
again to make sure it is turned off on the line that resets the Stage. The following example illustrates the concept.
With this example, if the Jog Panel key is pressed when the Stage is executed, the Stage will always be reset on
the first pass through.

;============

STG1

;============

IF JPI1 THEN (PD1) ;push a Jog Panel button to trigger a One-Shot

IF PD1 THEN (PD1), RST STG1 ;accessing the PD again causes it to get RST, Stage is RST

Fast Stage – FSTG
Fast Stages behave exactly like Stages except that they are executed at up to 1000 times per second. These
should be used only when extremely precise timing is necessary.

Warning: Fast Stages do not interrupt the operation of normal speed stages, so if the normal PLC program takes
longer than 1 ms to execute completely, then the Fast Stages will not execute at the stated rate. Make sure that
the standard timings are below 1 ms to get the fastest execution time. The average time can be found in the PLC
Diagnostic screen.

CNC to MPU System Variable – SV_*
These are System Variables that are SET or RST by CNC software. There are both Word and Bit type SVs. Both
CNC software and the PLC program can read these System Variables. Convention states that they should be
typed in all caps. For a complete list of System Variables and their uses see Appendix D.

PLC to CNC System Variable – SV_*
These are System Variables that are SET or RST by the PLC Program. There are both Word and Bit type SVs.
Both CNC software and the PLC program can read these System Variables. Convention states that they should
be typed in all caps. For a complete list of System Variables and explanation of usage see Appendix D.

Keywords
Keywords are reserved words in the PLC programming language that cannot be used except for the defined
purpose. Often attempting to use the keyword in an undefined way will cause the program to fail compilation. In
example code they will always be capitalized by convention and should not be confused with constant defined
variables or System Variables.

Page 20

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Defining variables – IS
This keyword is used to setup labels for all the data types. It is only used in the definition section at the top of the
program. It is not used in the actual PLC program that gets executed. When the program is compiled all the
labels are replaced with what they refer to from the definition section of the PLC program. For example the E-
stop Input is defined like:

EStopOK IS INP11.

IS is used on every data type to define a name for that variable. There is also a built in functionality for defining
constant data to have a name. Math can be done in the definition and previous definitions of constants can be
used as long as the entire assignment is in parentheses. An example is:

DEFINED_CONSTANT IS (1+2+5*7)

SECOND_CONST IS (DEFINED_CONSTANT*10)

Conditional Statement – IF/THEN
The Conditional Statement is used for every line of the PLC Program that can be executed and is synonymous
with a rung in ladder logic. The first IF/THEN in a Program defines the start of the PLC program and the end of
the Variable Definitions. The part of the line between the IF and the THEN must evaluate to a boolean value (true
or false). If it cannot be resolved to a boolean value then an error is thrown at compile time. This means that
Words must be checked with Relational Operators and a Word itself cannot be the test for truth. IF W1 > 10
THEN (OUT2) is a valid test whereas IF W1 THEN (OUT2) is not. There can be as many conditions on the truth
of a Conditional Test as you need. They are all separated by Logical Operators such as OR(||) and AND(&&).

There is no ELSE Keyword, but the functionality can be achieved by copying the previous test and putting
parentheses around it with a NOT symbol in front of it.

The following table defines what can be done in the test part of the Conditional Statement. While the statements
are legal it does not mean that they are typically used. For example, typically Stages are not checked in IF/THEN
statements.

Data Type Usage

Input IF INP50 THEN (OUT50)

Output IF OUT50 THEN (MEM50)

Memory Bit IF MEM40 THEN SET STG2

Stage IF STG2 THEN (OUT4)

Fast Stage IF FSTG1 THEN (OUT1)

Word IF W1 > 156 THEN (OUT30)

Double Word IF DW2 > 4000000000000 THEN (MEM300)

Floating-point Word IF FW1 > 5.432 THEN SET OUT3

Double-Floating-point Word IF DFW1 > 8900.983201293 THEN (OUT80)

SV bit IF SV_ENABLE_AXIS_1 THEN (MEM70)

SV Word IF SV_PC_CYCLONE_STATUS_2 == 4 THEN (MEM65)

One-Shot IF PD2 THEN SET OUT7

Timer IF T1 THEN SET OUT 5
IF T1 > 4000 THEN SET OUT 6

Print Message – MSG
Printing a message is useful when the user needs to know about status changes. It is often used in ATC PLC
programs to indicate what part of the tool change process is being executed. Error reporting is the other key
usage of the PLC messaging functionality. There are two types of messages that can be used with the PLC

Page 21

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Message functionality, Synchronous and Asynchronous. Printing synchronous messages is done in its own
Stage that is SET only when a message needs to be printed. This Stage should be the last Stage in the PLC
program. Asynchronous messages are usually printed right inline with the rest of the code. Synchronous
messages are displayed only when the SV_STOP System Variable is SET and Asynchronous messages are
printed immediately. There is not a practical limit to the number of messages that can be defined for usage.

The command to send a message is IF 1==1 THEN MSG W1 where W1 stores a correctly setup message value.
A Word variable must be used with the MSG command.

Only one message can be displayed per pass of the PLC program. This explicitly does not mean that one each
Async and Sync message can be displayed per pass. There is no queue of messages that get buffered and sent
out eventually. If a new message is sent, it overwrites the previous one. Effectively, the last MSG command in
the program is what is displayed on screen, if it has changed.

Worth noting is the fact that once a particular Synchronous or Asynchronous message has been sent, a different
message number must be sent of the same type (Sync or Async) before that original message can be sent
again. For Synchronous messages, in addition to sending a different message number, it must be a different
nonzero message number. For example, if you send a Lube Fault Synchronous message, when that clears you
must send another different (and nonzero) Synchronous message before the Lube Fault message can be
displayed again. This means that if the Lube Fault message is displayed and then the fault is cleared, but no
new message is sent, if Lube Fault occurs again, the PLC program will be in the fault state, but there will be no
message displayed. It is very important to avoid this case as it will look as though there is no error, but CNC11
will not start a job due to SV_STOP being SET. It can be debugged by putting the Word variable in the first twelve
words so that they are displayed on the first PLC Diagnostic screen.

CNC11 takes the value sent via the MSG command and looks in the plcmsg.txt file for the selected message and
prints it to the screen. The method of formatting this value is to start with a 1 or 2 for Synchronous or
Asynchronous respectively and then add the message number times 256. An example table is shown below. The
Word Value column in the following table is what should be stored in the Word to be sent out with the MSG
command.

Message Number Type Word Value Notes

1 Synchronous 257 1 + 1*256

2 Asynchronous 514 2 + 2*256

25 Synchronous 6401 1 + 25*256

50 Asynchronous 12802 2 + 50*256

It is easiest and less error prone to write the message number once by defining a Constant to store to a word
before messaging it out. Below are the defines used in both Asynchronous and Synchronous messages for the
example program.

INP13_GREEN_MSG IS (2 + 1*256) ;258

INP13_RED_MSG IS (2 + 2*256) ;514

INP14_GREEN_MSG IS (1 + 3*256) ;769

NO_SYNC_MSG IS (1 + 99*256) ;25345

NO_ASYNC_MSG IS (2 + 100*256) ;25602

EStopOk IS INP11

Async_I IS INP13

Sync_I IS INP14

Async_O IS OUT13

Sync_O IS OUT14

Page 22

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Sync_Cleared_M IS MEM1

Stop IS MEM2

Sync_W IS W1

Async_W IS W2

InitialStage IS STG1

MainStage IS STG2

SetError IS STG3

;===

 InitialStage

;===

;setup default Word values

IF 1==1 THEN Sync_W = NO_SYNC_MSG, Async_W = NO_ASYNC_MSG,

 RST InitialStage, SET MainStage

;===

 MainStage

;===

IF !EStopOk THEN SET SV_STOP

IF SV_STOP THEN (Stop)

;prevent sync messages from showing up by resetting SV_STOP

IF !EStopOk && Sync_Cleared_M THEN RST Sync_Cleared_M, RST Sync_O, Sync_W = NO_SYNC_MSG

IF EStopOk && !Sync_Cleared_M THEN RST SV_STOP

;sync

;--if the Input is green, set the Sync message and override the Async messages

IF Sync_I THEN Sync_W = INP14_GREEN_MSG, SET SV_STOP, SET SetError, SET Sync_O

IF !Sync_I && Sync_O THEN SET Sync_Cleared_M

;async

;--show a message if the Input changes

IF Async_I THEN Async_W = INP13_GREEN_MSG, MSG Async_W, SET Async_O

IF !Async_I THEN Async_W = INP13_RED_MSG , MSG Async_W, RST Async_O

;===

Page 23

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 SetErrorStage

;===

IF 1==1 THEN MSG Sync_W

;if the message has been cleared, reset this stage to allow Async messages

IF Sync_W == NO_SYNC_MSG && Sync_Cleared_M THEN RST SetError

The sample plcmsg.txt file use for the above example is:

1 9001 Input 13 Green
2 9002 Input 13 Red
3 9003 Input 14 Green
99 9099 No SYNC Message
100 9010 No ASYNC Message

plcmsg.txt

The plcmsg.txt file contains a list of all the messages that the PLC can send to CNC11. This facility is used to
notify the user of status changes and fault conditions. The typical messages should not be overwritten by new
custom messages, rather new numbers should be added. The format for each line of the plcmsg.txt file is as
follows.

MessageNumber MessageLogNumber Message

There are three fields separated by one space each that must be setup for a line to be valid and usable. If the
line is not formed correctly, you will not know it until the message is trying to display. The MessageNumber field
is exactly the same number as the Message Number in the above table. The MessageLogNumber causes the
printed message to be put in the msglog.txt file so that problems can be diagnosed by Tech. Support. The 9xxx
series messages are reserved for PLC program usage. Make sure the Log Level is set to 4 in parameter 140 to
ensure the messages are logged. Message is the useful text that will be printed along with the
MessageLogNumber. It should contain a pithy message that informs the user about the change that occurred. All
text to the end of the line is printed so no comments are allowed in this file. The standard plcmsg.txt file is listed
below.

1 9001 PLC Execution Fault
5 9005 Axis 1 Communication In Fault
6 9006 Axis 2 Communication In Fault
7 9007 Axis 3 Communication In Fault
8 9008 Axis 4 Communication In Fault
9 9009 Axis 5 Communication In Fault
10 9010 Axis 6 Communication In Fault
11 9011 Axis 7 Communication In Fault
12 9012 Axis 8 Communication In Fault
13 9013 Axis 1 Communication Out Fault
14 9014 Axis 2 Communication Out Fault
15 9015 Axis 3 Communication Out Fault
16 9016 Axis 4 Communication Out Fault
17 9017 Axis 5 Communication Out Fault
18 9018 Axis 6 Communication Out Fault
19 9019 Axis 7 Communication Out Fault
20 9020 Axis 8 Communication Out Fault
21 9021 Axis Faults Cleared
22 9022 PLC Communication In Fault (Fiber 3)
23 9023 PLC Communication Out Fault (Fiber 1)
24 9024 PLC Faults Cleared
34 9034 FAULT! REMOVE PROBE FROM SPINDLE!!!
35 9035 KEYBOARD JOGGING DISABLED
36 9036 LUBE FAULT

Page 24

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

37 9037 PROBE TRIPPED WHILE JOGGING
38 9038 SPECIFIED SPIN SPEED < MIN SPIN SPEED
39 9039 Software Ready Fault
50 9050 Auto Coolant Mode
51 9051 Manual Coolant Mode
99 9099 Message Cleared
100 9100 BAD MESSAGE VALUE

System Variables – SV_...
System Variable names cannot be used verbatim as constant value labels, variable names, or as the beginning
of either. Removing the underscores from the name, for example, gets around this problem. Attempting to do so
will cause the program to fail at compile time.

Data Type Name
None of the names of Data Types used in the PLC program are allowed to be used as constant value labels or
variable names. This means that INP1 is invalid as is just INP. Attempting to do so will cause the program to fail
at compile time.

Indexes – Data Type[Data Type or Constant]
Using the Index ability is useful when writing generic programs that allow users to set an Input or Output that
they want a function to occur at in parameters. It is very important to check for Index Out of Range errors if this
functionality is used. The default value for the PLC Program parameters is 0.0 and all Data types start at 1, so an
Index Out of Range error would occur right away. This cannot be used with System Variables. In the following
example Parameter 171 is checked to make sure it is within a certain range, then an Output number is set based
on the information it finds.

p171_W IS W1

LubeOut_W IS W2

;read the parameter

IF 1==1 THEN p171_W = SV_MACHINE_PARAMETER_171

;make sure the parameter is in range, if not default value is used

IF (p171_W <= 0) || (p171_W >= 10) THEN LubeOut_W = 2

IF !((p171_W <= 0) || (p171_W >= 10)) THEN LubeOut_W = p171_W

;set output based on parameter

IF SV_PROGRAM_RUNNING || SV_MDI_MODE THEN (OUT[LubeOut_W])

Range Selection – '..'
This functionality allows setting or resetting of Bit type Variables including System Variables. Two dots are placed
a space apart from the beginning variable and ending variable. All variables between and including the two book-
end variables are either SET or RST, regardless of whether they are being used for anything else or if they have a
label. This can be useful in error conditions if you want to turn off all Outputs or Stages. Usage is as follows.

IF JPI1 THEN (PD1)

IF PD1 THEN RST OUT1 .. Out80

IF JPI2 THEN (PD2)

IF PD2 THEN SET OUT80 .. OUT1

Page 25

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

DUMP

The DUMP command causes the PLC program to dump the values stored in all of the first 64
Words, Double Words, Floating-point Words, and Double-Floating-point Words to
debug_dump0.txt in the cncm or cnct directory. DUMP should only be used sparingly and then
only when debugging the initial implementation of a PLC program because of the cost of
writing data to a file on the hard disk. This is useful for making sure Floating-point variables
are correct. The PLC Detective utility and the Live PLC IO display in CNC software have the
ability to monitor and display The first 44 W and FW types and the first 11 DW and DFW
types. In CNC12 v4.14, the first 88 W types can be displayed.

An example of using this is as follows.

IF JPI1 THEN (PD1)

IF PD1 THEN DUMP

Operators
The operators in a PLC program are used to compare data, to set one piece of data equal to another, invert the
data, etc. There are both unary and binary operators. The unary operators only require one variable or piece of
data to operate on. An example of this is inverting a memory bit like this !MEM1 or turning a Memory Bit on like
SET MEM1. A binary operator requires two pieces of data. Examples of using a binary operator are W1 >= W2 and
W3=W4. There are no Bitwise Operators at present. This means that bit masking cannot be done by ANDing or
ORing constant values with a Word. It can be done by setting and resetting bits and shifting as well. The
following operators are all valid in a CNC11 PLC program.

Assignment – =
The equals sign is used to set a Word or Timer on the left of the equals sign to a Word, Timer or numerical value
on the right of the equals sign. Some examples are listed below.

IF 1==1 THEN W1 = 10 ;Word1 is set to an integer value of 10

IF 1==1 THEN T1 = W1 ;Timer1 is also set to an integer value of 10 representing 10 ms

IF 1==1 THEN FW1 = 2.5 ;Floating-point Word1 is set to 2.5

Set – SET
SET turns on any of the Bit variables. The bit value is set to 1 and evaluates to true when checked. That is to say
that any of the Outputs, Memory Bits, Timers, Stages, Fast-Stages and System Variables that are bits can have
this keyword used on them. One-Shots cannot be SET. An example of using this is IF 1==1 then SET MEM1.

Data Types that can be used with SET Example of using SET

Memory Bits IF 1==1 THEN SET MEM2

Outputs IF 1==1 THEN SET OUT2

Inputs IF 1==1 THEN SET INP2

Timers IF 1==1 THEN SET T2

Stages IF 1==1 THEN SET STG2

Fast Stages IF 1==1 THEN SET FSTG2

One-Shots IF 1==1 THEN SET PD2

Page 26

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Reset – RST
Reset turns off any of the Bit variables. The bit value is set to 0 and evaluates to false when checked. That is to
say that any of the Outputs, Memory Bits, Timers, Stages, Fast-Stages and System Variables that are bits can
have this keyword used on them. One-Shots cannot be RST. An example of using this is IF 1==1 then RST
MEM2.

Data Types that can be used with RST Example of using RST

Memory Bits IF 1==1 THEN RST MEM2

Outputs IF 1==1 THEN RST OUT2

Inputs IF 1==1 THEN RST INP2

Timers IF 1==1 THEN RST T2

Stages IF 1==1 THEN RST STG2

Fast Stages IF 1==1 THEN RST FSTG2

One-Shots IF 1==1 THEN RST PD2

Output Coil – ()
Output Coils are used to SET or RST any bit output based on the conditions before the THEN. If the test in the IF
is true the output is SET, whereas if the test is false then the output is RST. The use of parenthesis does not
constitute Output Coils unless they are used to the right of THEN on any program line. Output Coils cannot be
used on Words. Be careful when using Coils because they can cause logical problems in your program. Do not
put a variable in Coils on one line and then try to SET or RST it somewhere else in the program as well because it
will change while moving through the PLC program and may have surprising results. If you are going to use a
variable in Coils, all of the logic to turn it on or off must be on the same line to avoid trouble. Coils cannot be
used on Timer Data types to start them counting because they are generally guaranteed to be turned off again
on the very next pass of the PLC program. Some examples are shown below to illustrate some Coil concepts.

;basic Coil usage

IF 1==1 THEN (OUT1) ;always turn on OUT1

IF MEM1 THEN (OUT2); SET OUT2 if MEM1 is SET and RST OUT2 if MEM1 is RST

;potentially problematic Coil usage

IF MEM1 || INP5 THEN (OUT4) ;OUT4 is guaranteed to be SET or RST by this line

IF MEM3 THEN SET OUT4 ;OUT4 may be SET by this line if MEM3 is SET

IF INP10 THEN RST OUT4 ;OUT4 may be RST by this line if INP10 is SET

;better usage of Coil

IF (MEM1 || INP5) || MEM3 && !INP10 THEN (OUT4) ;all logic combined

Jump – JMP
Jump RSTs the current Stage and SETs another one. See Stages for the effects of turning on or off a stage.
Execution does not jump around in the PLC program as in Assembler, but typically the stages are written one
after the other so in essence it will move to that one. A sample usage of Jump is IF 1==1 THEN JMP STG3. If a
JMP is called such that the current Stage is the stage being jumped to, then the Stage will still be set next time
through the PLC program. Jump can only be used on Stage variables. It is not advised to JMP out of the
MainStage, whereas it should be done out of the InitialStage. If you jump out of the MainStage and no other
stages are set, you must exit CNC11 and reboot the MPU11.

Page 27

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;typical usage

InitialStage

IF 1==1 THEN JMP MainStage ;InitialStage is RST and MainStage is SET.

Basic Math Operators – *, \, +, -, %
These are the basic four math functions, multiplication, division, addition and subtraction plus the Modulus
operator. They are all binary operators. These operators are allowed to be used on Word types only. The
modulus operator, %, is used to find the remainder of the division of two numbers.

Note that the calculation is done and then changed to the appropriate type when the value is assigned to a
variable. Assignment of floating-point values to Integer Words results in the decimal point value being truncated.
This means that IF 1==1 THEN W1 = 2.5*1 will result in W1 being set to 2. The following examples illustrate
usage of some of the operators.

;multiplication

IF 1==1 THEN W1 = 15*2; W1 is set to 30

IF 1==1 THEN FW1 = 0.5*; FW1 = half of current encoder counts for axis 1

;division

IF 1==1 THEN W2 = 128 / 2; W1 is set to 64

;Modulus

IF 1==1 THEN W3 = 15 % 2; W3 is set to 1 because 15/2 = 7R1

IF 1==1 THEN W4 = 128 % 15; W4 is set to 8 because 128/15 = 8R8

Relational Operators – <, >, <=, >=, !=, ==
Relational Operators are only valid when comparing Words, Word type System Variables and Timers. Bit type
variables cannot be compared with these operators. A relational operator compares two variables of the same
type and results in a 1 or 0 as the output.

Be aware that checking Timers with Relational Operators does not indicate anything about whether the Timer
has expired or not. It merely compares against the current count of ms since the Timer was Set.

Less Than or < checks to see if the variable on the left is less than the value on the right to evaluate to true.

Less Than Or Equal or <= checks to see if the variable to the left is less than or equal to the variable on the right
to evaluate to true.

Greater Than or > checks to see of the value on the left is greater than the value on the right to evaluate to true.

Greater Than Or Equal checks to see if the value on the left is greater than or equal to the value on the right to
evaluate to true.

Not Equal or != checks to see if two variables are not exactly equal to evaluate to true. Note that Floating-point !=
checks will most likely fail on calculated values due to rounding error. >= or <= should be used instead to check
Floating-point numbers.

Is Exactly Equal To or == checks to see if two variables are exactly equal to each other to evaluate to true. The
same warning applies to == as != about Floating-point numbers.

The following examples show how a sample PLC program line looks with a Relational Operator on it.

IF 1==1 THEN W1 = 10, W2 = 10

IF W1 > W2 THEN (OUT1) ;Out1 is RST because W1 is not greater than W2

IF W1 == W2 THEN (OUT2) ;Out2 is SET because W1 is equal to W2

Page 28

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Logical Operators – !,&&, ||, XOR or ^
Logical Operators are used to compare or change the state of Bit type variables including System Variables.

&& is the operator for AND. This means that both sides of the operator must be true to have the statement
evaluate to true. The following truth table shows all the options for evaluating a binary expression.

Left Side Right Side Result

0 0 0

0 1 0

1 0 0

1 1 1

|| is the operator for OR. This means that only one side of the operator needs to be true for the statement to
evaluate to true.

Left Side Right Side Result

0 0 0

0 1 1

1 0 1

1 1 1

XOR or ^ are the operators for Exclusive OR. This means that one of the sides of the operator must be true and
the other false to have the statement evaluate to true.

Left Side Right Side Result

0 0 0

0 1 1

1 0 1

1 1 0

The ! is a unary operator for NOT that inverts the state of a bit whether it is true or false.

Bit Value Result

0 1

1 0

Logical Operators cannot be used on Word Type variables. The results of multiple Relational checks can be
combined with Logical checks for more complex statements, however. All of the following lines are valid PLC
code. Often it increases readability to use parentheses around conditions to ensure correct interpretations.

IF MEM1 && INP2 THEN (OUT1)

IF (W1 > W2) || !MEM4 THEN (OUT5)

IF !MEM1 && INP2 || STG1 || FSTG1 && OUT3 XOR PD1 && T3 XOR SV_PC_POWER_AXIS_1 THEN (OUT6)

Convert to Word – BTW
BTW takes a range of Inputs, Outputs or Memory Bits and does a binary to decimal conversion, storing the result
in a Word. The default number of bits is 8, but a value of 1 to 32 is allowed. The first Bit is treated as the Least
Significant Bit and the next bit is the next highest number of Input, Output, Memory Bit. For example MEM1 to

Page 29

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

MEM8 are set, from lowest to highest, as 0110 0100 where 0 is red and 1 is green. When BTW is executed the
number is converted as 2+4+32 = 38 decimal. Note that the number of bits specified is a count number to use
rather than a specific Bit number to convert up to and including. This means, starting at Bit 0, how many of the
bits should be converted. The following example will setup the bits as the example above in code.

;setup the binary information

IF 1==1 THEN RST MEM1, SET MEM2, SET MEM3, RST MEM4

 , RST MEM5, SET MEM6, RST MEM7, RST MEM8

;evaluate the Memory Bits as a Binary number and convert it to Decimal, storing in W1

IF 1==1 THEN BTW W1 MEM1

Convert to Binary – WTB
WTB converts a Word type variable to Binary and writes to Outputs or Memory Bits. By default the lowest 8-bits
of Binary are written. The lowest bit goes into the first bit and so on up to the highest Bit. An Integer number from
1-32 can be specified to print from 1 to 32 of the Binary bits to either Memory or Output locations.

Note that the number of bits specified is a count number to use rather than a specific Bit number to convert up to
and including. This means, starting at Bit 0, how many of the bits should be converted.

Note that the Binary bits will write to the next consecutive bits regardless of any other meaning in the PLC
program. If you do a default WTB in a Memory section that only has 5 free bits, three of them will change
something you likely do not want to change.

For example the Word W1 has a value of 12345 in decimal notation and 11000000111001 in Binary notation. A
standard WTB W1 MEM1 will print 00111001 with the Least Significant Bit written to MEM1 and the Most Significant
Bit written to MEM8 as seen on PLC Diagnostics. In the first example the default WTB is used and 8 bits will be
written out. In the second example 12 bits will be written to OUT17 to OUT28.

Data Types that can be used with WTB Example using WTB

Memory Bits IF 1==1 THEN WTB W5 MEM10

Outputs IF 1==1 THEN WTB W5 OUT17 12

Convert to Binary Coded Decimal – BCD
BCD is used primarily for interfacing with external devices that need information in Binary Coded Decimal format.
BCD is different than Binary in that each number in a decimal number is converted to a 4-bit binary number.

This means that to represent the decimal number 125 in BCD the number must be broken up into the ones, tens
and hundreds positions and each of those numbers is converted to a Binary number. The Binary numbers for 1,
2, and 5 are 0001 0010 0101 which is the BCD version of 125.

The following table shows the conversion for the Decimal and BCD values. To use this feature on outputs, four
outputs must be used for each place in decimal that the external device will be looking for. In the case of an ATC
with 24 tools two sets of four outputs must be used to represent all possible numbers. An example of using the
BCD command is: IF 1==1 THEN BCD W2. The Word can then be sent to the correct Outputs with the WTB
command.

Note that the largest Decimal value that can be converted is 8 digits because only 32-bit Integer Words can be
used for the BCD command. This gives 32-bits divided by 4 bits gives 8 decimal places. This means that the
BCD of a number greater than 99,999,999 is invalid and undefined. For reference, the bits higher than 8 places
are truncated and cannot be recovered.

Decimal BCD

0 0000

1 0001

2 0010

Page 30

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

Convert from Binary Coded Decimal – BIN
BIN converts a Word value that is in BCD format to standard Binary format. When the Word is displayed on the
PLC Diagnostic Screen it is shown as a Decimal number. The WTB command can be used to then print the Binary
version of the number to Memory Bits or Outputs if desired. A simple use case of the BIN command is IF 1==1
THEN BIN W1.

Note that there is no checking on the BCD number to determine if it is a valid BCD number. There are
many invalid BCD numbers in each group of four digits, which could be checked in a PLC program. In every
group any BCD number greater than 1001 or 9 is invalid because in decimal notation each place can only hold
0-9. For example a BCD number 57004 is completely invalid because in Binary it is 1101 1110 1010 1100 all of
which are above 1001.

One way to test the BCD number is outlined below.

;read the 4 bits in from inputs for one BCD number

IF 1==1 THEN BTW W1 INP1 4

;create a copy of the word

IF 1==1 THEN W2 = W1

;convert the BCD number to Binary

IF 1==1 THEN BIN W2

;convert the now Binary number back to BCD

IF 1==1 THEN BCD W2

;check to see if they are the same BCD again

IF W2 != W1 THEN SET BCD_Fault_MEM, AsyncW = 258, MSG AsyncW

Set or Reset a Bit in a Word – BITSET / BITRST
When manipulating binary data it is often desirable to SET or RST only certain bits in the data. BITSET and
BITRST can by used on Words or Word Type System Variables. Depending on the command used, the specified
bit from 0-31 will be changed in the specified Word. Some System Variables that are Integer Word values are
actually 16 to 32 different Binary Bits that can be checked, for example SV_PC_CYCLONE_STATUS_1. Note that
the Bit number range is different than the one used in WTB and BTW. The Bit number is the actual Bit that is
checked. Because Bit numbering starts at zero, when you reference a Bit by number you are checking the “Bit
number + 1” Bit.

IF 1==1 THEN BITSET SV_PLC_DEBOUNCE_1 5 ;Turn on Bit 6 in the first Debounce SV

IF 1==1 THEN BITRST W2 20 ;Turn off Bit 21 in Word 2

Check if a Bit is Set in a Word – BITTST
BITTST checks the specified bit in the specified Word or System Variable and SETs a Memory Bit if true and RSTs
the Memory Bit if it is false. The range of bits that can be tested is 0-31. Note that the Bit number range is

Page 31

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

different than the one used in WTB and BTW. The Bit number is the actual Bit that is checked. Because Bit
numbering starts at zero, when you reference a Bit by number you are checking the “Bit number + 1” Bit. In the
example below Word number one, Bit 17 is checked and the state of it is copied to Memory Bit one.

IF 1==1 THEN BITTST W1 16 MEM1

Left / Right Shift Bits in a Word – LSHIFT/RSHIFT
Left and Right Shift are used on Words to move bits to the left or right. Right Shift is a Logical Shift rather than
an Arithmetic Shift. This means that, as data is shifted, upper bit positions will always be filled with zero.

A pictorial example of shifting is in the following table with the same commands shown in code afterwards. The
left shifting adds zeroes to the right-hand side to bump the number to the left first. The decimal value is
3735928559 originally and then after the left shift it becomes 4009754624. Finally, the right shift adds zeroes to
the left-hand side to bump the number to the right and generate a decimal 61184. Notice that this acts as a mask
and removes all except the second 8-bits.

Operation Binary 32-bit Word value

Original Value 1101 1110 1010 1101 1011 1110 1110 1111

Left Shift 24 bits 1110 1111 0000 0000 0000 0000 0000 0000

Right Shift 16 bits 0000 0000 0000 0000 1110 1111 0000 0000

IF 1==1 THEN LSHIFT W1 24

IF 1==1 THEN RSHIFT W1 16

Trigonometric Functions – SIN, ASIN, COS, ACOS, TAN, ATAN2
Trig. Functions Sine, ArcSine, Cosine, ArcCosine, Tangent and ArcTangent2 are available in the PLC program.
That being said, they should not be used except when it cannot in any way be done in G-Code because of the
significant time requirement to calculate any of the Trig. Functions.

The values sent into the Trigonometric Functions must be in Radians, not Degrees. If you do SIN(30) the answer
you will get is approximately -0.98803162, which is obviously not the SIN(30 degrees) = 0.5. To convert a degree
value to Radians, multiply by PI and divide by 180 degrees. It is best to setup a constant in the InitialStage to
avoid excessive computation and significantly reduce typographical errors. All of the valid Trig. Functions are
used in the following program.

;/\

;Program: trig.src

;Purpose: Show that the Trig functions work correctly

;Date: 23-APR-2010

;/\

PI IS 3.1415926535897932384626433832795

DEG_TO_RAD IS (PI/180)

RAD_TO_DEG IS (180/PI)

DoneOut IS OUT1; SET when done calculating

rad_deg1_FW IS FW1 ;sin angle in radians

rad_deg2_FW IS FW2 ;cos angle in radians

Page 32

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

rad_deg3_FW IS FW3 ;tan angle in radians

calc_sin_FW IS FW4 ;calculated sin

calc_cos_FW IS FW5 ;calculated cos

calc_tan_FW IS FW6 ;calculated tan

calc_asin_FW IS FW7 ;calculated arcsin in degrees

calc_acos_FW IS FW8 ;calculated arccos in degrees

calc_atan2_FW IS FW9 ;calculated atan2 in degrees

InitialStage IS STG1

MainStage IS STG2

;==

 InitialStage

;==

IF 1==1 THEN rad_deg1_FW = 30 * DEG_TO_RAD ;sample degree values must -

IF 1==1 THEN rad_deg2_FW = 60 * DEG_TO_RAD ;get converted to radians -

IF 1==1 THEN rad_deg3_FW = 45 * DEG_TO_RAD ;for Trig Functions

IF 1==1 THEN calc_sin_FW = SIN (rad_deg1_FW) ;calc sin, cos, tan -

IF 1==1 THEN calc_cos_FW = COS (rad_deg2_FW) ;of 30 deg

IF 1==1 THEN calc_tan_FW = TAN (rad_deg3_FW) ;

;calc arcsin

IF 1==1 THEN calc_asin_FW = ASIN (calc_sin_FW)

;calc arccos

IF 1==1 THEN calc_acos_FW = ACOS (calc_cos_FW)

;calc atan2

IF 1==1 THEN calc_atan2_FW = ATAN2 (calc_tan_FW, calc_tan_FW)

IF 1==1 THEN calc_asin_FW = calc_asin_FW * RAD_TO_DEG ;

IF 1==1 THEN calc_acos_FW = calc_acos_FW * RAD_TO_DEG ;convert to deg.

IF 1==1 THEN calc_atan2_FW = calc_atan2_FW * RAD_TO_DEG ;

IF 1==1 THEN JMP MainStage

;==

 MainStage

Page 33

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;==

IF JPI1 THEN (PD1)

IF PD1 THEN DUMP, RST MainStage

The following list shows what the results are from the above calculations. You can follow along on your PC with
the calculator as long as you enter the first three values in Radians.

PLC Dump Start

 FW1: 0.52359879 FW2: 1.04719758

 FW3: 0.78539819 FW4: 0.50000000

 FW5: 0.49999997 FW6: 1.00000012

 FW7:30.00000000 FW8:60.00000000

 FW9:45.00000000

Square Root – SQRT
The square root of a number is a different number that, when multiplied by itself results in the given number.
Numbers that have the square root taken of them should be stored into a Floating-point Word or Double-
Floating-point Word because they will most likely be non-Integer numbers. SQRT results can be stored into a
Word, but the non-Integer portion will be truncated. This operation should rarely be used due to the time
intensive nature of the operation.

An example of using the SQRT function follows.

IntSqrt_W IS W1

Sqrt_FW IS FW1

;take the sqare root of 2 and store to a Floating-point Word

IF 1==1 THEN Sqrt_FW = SQRT (2) ;returns 1.41421354

;take the sqare root of 17 and store to a Word

IF 1==1 THEN IntSqrt_W = SQRT(17) ;returns 4.12310562, but 4 stored into the Word

Raise Number to a Power – POW
Raising a number to a power means multiplying the number by itself some number of times. The POW command
takes two arguments, the first being the number to raise and the second being the number of times to multiply
the first by itself. Both numbers can be floating-point values. If the second number is relatively small, it is usually
faster to just multiply the number out, for example 2*2*2 instead of 23. The following example shows how to use
the POW command.

pow_FW IS FW1

pow2_FW IS FW2

;raise 2 to the 3rd power

IF 1==1 THEN pow_FW = POW(2, 3) ;returns 8.00000000

;raise 2 to the 3.5th power

IF 1==1 THEN pow2_FW = POW(2, 3.5) ;returns 11.31370831

;raise 300 to the 1/8th power

Page 34

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF 1==1 THEN pow3_FW = POW(300, 0.125) ;returns 2.04004693

Absolute value – ABS
Absolute value.

If 1==1 THEN W1 = -42,

 W2 = ABS(W1) ; W2 = 42

Page 35

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Standard PLC Program Layout

A PLC program is laid out with all definitions at the top of the program until the first IF statement is used. From
then on no more definitions are allowed and will generate an error at compile time. When the PLC program is
executed it runs from top to bottom and executes every line except under certain circumstances, specifically
Stages. Top to bottom execution can lead to logic errors where something is SET in one part of the program and
then reset somewhere else. Wherever possible all conditions that could change an output should be gathered
together.

The basic functionality described in this chapter is based on the basic DC3IOB PLC program.

The PLC program needs to have certain sections to achieve a minimum of real-world functionality as outlined in
this chapter. The PLC program should always check all of the connections between the MPU, the PLC board
including miniPLC boards and the drive board. In order for a Jog Panel or Keyboard Jogging to work they must
be written into the PLC program.

Definitions are used to make reading the program easier and as such, the names used for the definitions should
reflect the function and polarity when tripped, on or Green in PLC Diagnostics. This means that if a variable is
Normally Closed it is named something like XminusLimitOk. The logic to check it becomes IF !
XMinusLimitOk THEN SET MEM9. If the variable is Normally Open, the naming should be inverted. For a
Normally Open Lube Fault input the logic to check it becomes IF LubeFault THEN SET MEM90.

At a minimum a WatchDogStage, InitialStage and MainStage should be used in every PLC program. The
basic PLC program has many more stages for things like spindle control, Lube timers, Checking System
Variables, etc. The InitialStage is used to setup any timers and default states. The MainStage is set in the
InitialStage which then resets itself and is never SET again while CNC11 is running. This means that the
InitialStage will only run once for each time the CNC software starts. Exiting CNC11 and restarting it causes
the InitialStage to run again.

Defining Variables
Any variable is defined by having the label set to a valid data type using the keyword IS. Further examples can
be seen for each data type under Data Types.

Initial-Condition Setup
The on/off state of various modes of operation such as Auto/Manual Coolant, Fast/Slow Jogging, etc. must be
set by the PLC program because everything defaults to off. It is desirable to do this without having to push the
buttons to set the states the first time because being off means something as much as being on. For example, if
the Fast/Slow Jog mode is not actively set, it defaults to Fast Jog. The convention is to use a Memory Bit called
OnAtPowerUp. It is SET in the InitialStage and RST at the end of the MainStage. This means that all setup
should be done inside the MainStage or before the MainStage executes. This influences the location of the
MainStage in a program if setup is done in other Stages with this Memory Bit because if you RST it at the end of
the MainStage and reference it after the MainStage, it will be false and not everything will be setup as desired.
Typical things that should be setup with this variable are the Spindle Override percentage, Auto/Manual Spindle
Mode, Spindle Direction, Auto/Manual Coolant Mode, Incremental/Continuous Jogging, Incremental Jog
Distance Multiplier and Fast/Slow Jog Mode. An example of setting the Spindle Mode follows.

;--Set spindle to auto mode on startup

;--explanation

;IF (Jog-Panel-Key AND Not-In-Auto-Spindle-Mode) OR First-time-through-the-Program

; Then turn on Auto-Spindle-Mode

;--actual code

IF (SpinAutoManPD && !SpinAutoModeLED) || OnAtPowerUp

Page 36

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 THEN SET SpinAutoModeLED

Internal PLC Fault and Software Running Checking
Just before the InitialStage there should be a Stage that checks for catastrophic PLC problems and also for
CNC software to be running. Problems currently consist of dividing by zero, invalid op-code and index out of
bounds. If any of these errors occurs the PLC executor immediately stops executing the program and starts over
again at the beginning. This is why it is important to check these errors in the first Stage before any division or
Index usage occurs.

PLC Fault Status
The procedure is to see if any of the three errors are set and if they are, read the related System Variables to
Words and use the PLC messaging functionality to tell the user. Note that to generate the invalid op-code error
the compiled PLC program must be changed at the hexadecimal level, so it is a very hard error to generate. No
sample is given for this case as it involves manipulating the compiled program. A sample program follows that
only checks for the three errors. To get either of the divide by zero or index out of bounds errors comment in
either of the sections in the MainStage. Note that only the first error to occur will be generated due to the nature
of these errors.

Software Ready
The SV_PC_SOFTWARE_READY Bit is checked to see if CNC software is running. This is mostly used if CNC
software crashes to prevent motion, too changes, etc. SV_STOP is set which will cause E-Stop be activated.
When the software starts again, E-Stop must be cycled and then motion can be commanded again. SV_STOP is
SET and the InitialStage is run whenever the software starts up again.

Checking PLC Fault and Software Ready
;===

 WatchDogStage

;===

; Handle PLC executor faults. The only way to reset a PLC executor fault

; is to reboot the MPU11.

IF SV_PLC_FAULT_STATUS != 0

 THEN PLC_Fault_W = SV_PLC_FAULT_STATUS,

 PLCFaultAddr_W = SV_PLC_FAULT_ADDRESS,

 ErrorCode_W = PLC_EXECUTOR_FLT_MSG, MSG ErrorCode_W,

 SET PLCExecutorFault_M, RST SetErrorStage, SET SV_STOP

; Handle software exit.

IF !SV_PC_SOFTWARE_READY && (SV_PLC_FAULT_STATUS == 0)

 THEN SET SoftwareNotReady_M,

 SET SV_STOP,

 ErrorCode_W = SOFTWARE_EXIT_MSG

Page 37

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

if SV_PC_SOFTWARE_READY && (SV_PLC_FAULT_STATUS == 0) THEN (SoftwareReadyPD)

IF SoftwareReadyPD && !SoftwareNotReady_M || !True THEN SET InitialStage

IF SoftwareReadyPD && SoftwareNotReady_M THEN RST SoftwareNotReady_M

;===

 MainStage

;===

;This is just sample code to generate the errors, they should not actually be done in
a ;real PLC program. To cause either of the errors uncomment the lines starting with IF.

;divide by zero

;If 1==1 THEN Word2 = 10/0

;index out of bounds

;IF 1==1 THEN Word3 = 2500, Word4 = 2500

;IF 1==1 THEN Word5 = Word3 + Word4

;IF 1==1 THEN SET OUT[Word5]

Jog Panel and Keyboard Jogging
This is a significant part of the PLC program and as such is not transcribed from the basic program.

Nearly all Jog Panel functions that can be caused by key presses require Keyboard Jogging to be SET in
Parameter 170 bit 0 and RST in Parameter 148 bit 1. The exceptions are Escape and Rapid Override.

There are some keys that require the Keyboard Jog Panel to be on screen as well as have Keyboard Jogging
enabled. These functions are primarily limited to Jogging.

Axis Enable
The axes are checked for motion related fault conditions including a drive fault, stall error and
fiber connections.

Fiber/Wire Connection Checking
There are two kinds of communication used on MPU11 systems. The DriveBus is used for communication
related to motor control and can be either fibers 4 and 5 or the Drive Communication wiring for expanding the
number axes that can be controlled. The PLCBus is on fibers 1 and 3 and is used for controlling I/O. If the Buses
are being used, the connections must be checked to ensure communication problems are not clouding
troubleshooting.

Checking the connections only needs to be done a few times a second to be effective. This means having a
stage that is set by a Timer to read the information. Both of the following sections use the same logic to check for
errors, but the first checks both connection methods and the second only checks the PLCBus. The third section
needs to be added if an expansion board is added to the PLC.

Drive and PLCBus Checking
Presently the Optic4 and DC3IOB have DriveBus Fiber connections. The Optic4, DC3IOB and ALLIN1DC have
Drive Communication In and/or Out Wire connections. The ALLIN1DC has an MPU11 on-board which means
there are no visible Fiber connections, but the Drive and PLCBuses are still used and should be checked. If a

Page 38

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

system using 3rd party drives is used with more than four axes, the Optic4 must be used in conjunction with the
GPIO4D and the DriveBus Fiber Checking must be done as well.

;===

 CheckCycloneStatusStage

;===

; Due to amount of time it takes to retrieve data from the cyclone, this stage

; is only called few times per second to help reduce scan time of the main PLC

; program.

; The logic below is the equivalent to the following:

; IF true THEN BITTST SV_PC_CYCLONE_STATUS_2 0 Axis1FiberOk_M,

; BITTST SV_PC_CYCLONE_STATUS_2 1 Axis2FiberOk_M,

; BITTST SV_PC_CYCLONE_STATUS_2 2 Axis3FiberOk_M,

; BITTST SV_PC_CYCLONE_STATUS_2 3 Axis4FiberOk_M,

; BITTST SV_PC_CYCLONE_STATUS_2 4 Axis5FiberOk_M,

; BITTST SV_PC_CYCLONE_STATUS_2 5 Axis6FiberOk_M,

; BITTST SV_PC_CYCLONE_STATUS_2 6 Axis7FiberOk_M,

; BITTST SV_PC_CYCLONE_STATUS_2 7 Axis8FiberOk_M

IF true THEN WTB SV_PC_CYCLONE_STATUS_2 Axis1FiberOk_M

; Generate some messages for fiber or wire to MPU11 having issues

IF SV_AXIS_VALID_1 && !SV_DRIVE_ONLINE_1 THEN ErrorCode_W = AXIS1_INFLT, SET
DriveComFltIn_M

IF SV_AXIS_VALID_2 && !SV_DRIVE_ONLINE_2 THEN ErrorCode_W = AXIS2_INFLT, SET
DriveComFltIn_M

IF SV_AXIS_VALID_3 && !SV_DRIVE_ONLINE_3 THEN ErrorCode_W = AXIS3_INFLT, SET
DriveComFltIn_M

IF SV_AXIS_VALID_4 && !SV_DRIVE_ONLINE_4 THEN ErrorCode_W = AXIS4_INFLT, SET
DriveComFltIn_M

IF SV_AXIS_VALID_5 && !SV_DRIVE_ONLINE_5 THEN ErrorCode_W = AXIS5_INFLT, SET
DriveComFltIn_M

IF SV_AXIS_VALID_6 && !SV_DRIVE_ONLINE_6 THEN ErrorCode_W = AXIS6_INFLT, SET
DriveComFltIn_M

IF SV_AXIS_VALID_7 && !SV_DRIVE_ONLINE_7 THEN ErrorCode_W = AXIS7_INFLT, SET
DriveComFltIn_M

IF SV_AXIS_VALID_8 && !SV_DRIVE_ONLINE_8 THEN ErrorCode_W = AXIS8_INFLT, SET
DriveComFltIn_M

; Generate some messages for fiber or wire to drive having issues

IF SV_AXIS_VALID_1 && SV_DRIVE_ONLINE_1 && SV_MASTER_ENABLE && !Axis1FiberOk_M

 THEN ErrorCode_W = AXIS1_OUTFLT, set DriveComFltOut_M

IF SV_AXIS_VALID_2 && SV_DRIVE_ONLINE_2 && SV_MASTER_ENABLE && !Axis2FiberOk_M

Page 39

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 THEN ErrorCode_W = AXIS2_OUTFLT, set DriveComFltOut_M

IF SV_AXIS_VALID_3 && SV_DRIVE_ONLINE_3 && SV_MASTER_ENABLE && !Axis3FiberOk_M

 THEN ErrorCode_W = AXIS3_OUTFLT, set DriveComFltOut_M

IF SV_AXIS_VALID_4 && SV_DRIVE_ONLINE_4 && SV_MASTER_ENABLE && !Axis4FiberOk_M

 THEN ErrorCode_W = AXIS4_OUTFLT, set DriveComFltOut_M

IF SV_AXIS_VALID_5 && SV_DRIVE_ONLINE_5 && SV_MASTER_ENABLE && !Axis5FiberOk_M

 THEN ErrorCode_W = AXIS5_OUTFLT, set DriveComFltOut_M

IF SV_AXIS_VALID_6 && SV_DRIVE_ONLINE_6 && SV_MASTER_ENABLE && !Axis6FiberOk_M

 THEN ErrorCode_W = AXIS6_OUTFLT, set DriveComFltOut_M

IF SV_AXIS_VALID_7 && SV_DRIVE_ONLINE_7 && SV_MASTER_ENABLE && !Axis7FiberOk_M

 THEN ErrorCode_W = AXIS7_OUTFLT, set DriveComFltOut_M

IF SV_AXIS_VALID_8 && SV_DRIVE_ONLINE_8 && SV_MASTER_ENABLE && !Axis8FiberOk_M

 THEN ErrorCode_W = AXIS8_OUTFLT, set DriveComFltOut_M

If !EstopOk THEN rst DriveComFltIn_M, rst DriveComFltOut_M

If DriveComFltOut_M || DriveComFltIn_M THEN set AxisFault_M

;check PLC status bit

IF TRUE THEN BitTst SV_PC_CYCLONE_STATUS_1 21 PLCBusExtDevEn_M

;check input fiber

IF !SV_PLC_BUS_ONLINE THEN ErrorCode_W = PLC_INFLT,

 rst PLCBus_Oe_M, set PLCFault_M

;check output fiber

IF SV_PLC_BUS_ONLINE && PLCBus_Oe_M && !PLCBusExtDevEn_M

 THEN ErrorCode_W = PLC_OUTFLT, SET PLCFault_M

;clear PLC errors

IF PLCFault_M && SV_PLC_BUS_ONLINE && PLCBusExtDevEn_M && !EstopOk

 THEN RST PLCFault_M, ErrorCode_W = PLC_FLT_CLR, SET PLCBus_Oe_M

IF True THEN RST CheckCycloneStatusStage

PLCBus Checking only
The GPIO4D communicates to the MPU11 only over the PLCBus. If a system only has a GPIO4D then only the
PLCBus should be checked. This section details the PLC Fiber checking only. The errors are checked for and
set in the AxesEnableStage.

;===

 CheckCycloneStatusStage

Page 40

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;===

; Due to amount of time it takes to retrieve data from the cyclone, this stage

; is only called few times per second to help reduce scan time of the main PLC

; program.

;check PLC status bit

IF True THEN BITTST SV_PC_CYCLONE_STATUS_1 21 PLCBusExtDevEn_M

;check input fiber

IF !SV_PLC_BUS_ONLINE THEN ErrorCode_W = PLC_INFLT,

 RST PLCBus_Oe_M, SET PLCFault_M

;check output fiber

IF SV_PLC_BUS_ONLINE && PLCBus_Oe_M && !PLCBusExtDevEn_M

 THEN ErrorCode_W = PLC_OUTFLT, SET PLCFault_M

;clear PLC errors

IF PLCFault_M && SV_PLC_BUS_ONLINE && PLCBusExtDevEn_M && !EstopOk

 THEN RST PLCFault_M, ErrorCode_W = PLC_FLT_CLR, SET PLCBus_Oe_M

IF True THEN RST CheckCycloneStatusStage

MiniPLCBus Checking
This section should be added to any PLC program that uses the PLCADD1616 or ADD4AD4DA expansion
boards. Specifically the checking should be added to the CheckCycloneStatusStage. Only the MiniPLCBus
Online bits are checked in this section, but they should be added to the original Stage. Only the Expansion
headers that are used should be checked. There is no equivalent to the SV_Axis_Valid_1 - _7 System
Variables. Looking in the mpu_info.txt file will show what expansion boards are plugged in to the headers.

;add to Constant Defines

MINI_PLC_1_FLT_MSG IS (1 + 256*60); 15361

;add to CheckCycloneStatusStage

;check the first Expansion board

IF 1==1 THEN BITTST SV_PC_MINI_PLC_ONLINE 0 ADD1616ok1_M

IF !ADD1616ok1_M && PLCBus_Oe_M THEN

 ErrorCode_W = MINI_PLC_1_FLT_MSG, SET SetErrorStage, SET PLCFault_M

LubeTimers
There are two options for setting up automatic lubing in the basic PLC program. The first type is used for Lube
pumps with no timer internally. This means that the PLC program must turn the output on and off to power the
Lube pump correctly. The second type is for Lube pumps with internal timers. If Parameter 179 is set to a zero,
then the pump timers will be used, otherwise the PLC program will keep track of the time that a job is running to
determine when the next lube cycle should start.

Page 41

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Lube Pump Internal Timer
;===

 LubeUsePumpTimersStage

;===

; METHOD 1 (SS == 0) For lube pumps with internal timers.

;

; When using this method, P179 should be set such that MMM is a

; value that is greater than the cycle time set on the internal timers and

; SS should be set to zero. How much greater MMM needs to be depends on the

; accuracy of the lube pump timers, but it is better to be on the long side

; to ensure proper operation.

;

; Example 1. The internal lube cycle interval is set to 60 minutes.

; Set P179 = 7500. In this example, as long as the accuracy

; of the lube timer interval causes the lube to turn on

; within 75 minutes, it will work. Note that the amount of time

; that lube is output is usually set with another timer control

; on the lube pump and it does not factor into the setting of P179.

;

; It should be noted that lube pumps with internal timers may differ on how

; they operate.

;

; (a) For pumps that lube immediately when power is applied and then start timing

; until the next cycle, it is possible to run out of lube quickly on short job

; runs if, after the program has been run, lube power is removed.

;

; (b) For pumps that do not lube until it has been turned on for the interval time,

; it is possible that lube never gets applied if, after the short program has been run,

; lube power is removed.

;

; A short program or job run is defined as a job that finishes before

; the interval setting (60 minutes in the above example).

;

; For the above mentioned reasons, we want the power to be applied for at least

; the amount of time set by the inteval timer, noting that if the user decides

; to engage the E-stop to remove power after short jobs, then they risk the

; above mentioned problems accoding to the type of pump.

;

Page 42

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

; On the start of SV_PROGRAM_RUNNING, the lube pump turns on.

; The lube pump is turned off when a program has NOT been

; running continuously for MMM minutes or E-stop is engaged.

; The reason the lube pump is turned off after a program has NOT been

; running for MMM minutes is to prevent lubing when the user leaves for the

; weekend, leaving the machine on and E-stop disengaged.

IF (SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN SET Lube, RST LubeM_T

IF !(SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN LubeM_T = LubeM_W, SET LubeM_T

IF LubeM_T || !EStopOk THEN RST Lube

Lube Pump External Timer
;===

 LubeUsePLCTimersStage

;===

;

; METHOD 2 (SS != 0) For lube pumps that do not have internal timers.

;

; When using this method P179 should be set so the lube turns on

; every MMM minutes for SS seconds.

;

; Example 1.

; To set the lube pump power to come on for 5 seconds

; every 10 minutes, set P179 = 1005.

; MMMSS

; Example 2.

; To set the lube pump power to come on for 30 seconds

; every 2 hours, set P179 = 12030

; MMMSS

;

; This method will accumulate time while a program is running until

; it reaches MMM minutes, at which time it will apply power

; for SS seconds (unless E-stop is engaged) and then start over. It is

; possible with frequent use of E-stop that a lube cycle is cut short.

;

IF (SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN LubeM_T = LubeM_W, SET LubeM_T

IF !(SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN (StopRunningPD)

IF StopRunningPD THEN LubeAccumTime_W = LubeAccumTime_W + LubeM_T, RST LubeM_T

Page 43

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF LubeM_T || (LubeAccumTime_W + LubeM_T > LubeM_W)

 THEN SET Lube, LubeS_T = LubeS_W, SET LubeS_T, RST LubeM_T, LubeAccumTime_W = 0

IF LubeS_T || !EStopOk THEN RST Lube, RST LubeS_T

Feedrate Override
Feedrate Override allows changing the master feedrate or commanded velocity if it is enabled. The basic
feedrate override starts by reading the Feedrate potentiometer then scaling it to 0% to 200% from 0 to 256. The
program then determines whether the Feedrate knob or the keyboard feedrate keys should be applied to CNC
software. The maximum value is limited by parameter 39. Parameter 78 allows the feedrate value to be adjusted
down if the spindle speed does not keep up with the command so CNC software gets to see if it wants to modify
the Feedrate Override. Finally the PLC program has one last chance to change the new value coming back from
the CNC software, though typically it should not.

There is now a feature that allows using keyboard and Knob override at the same time. By default the Knob is
used, but if the Feedrate Override keyboard keys are used, then the Feedrate override displayed is based on the
Keyboard value and not the Knob value. When the Knob is turned again more than 3%, however that value is
displayed.

Spindle Functionality

Spindle DAC Output
Precise spindle speed is controlled through an inverter by sending an analog signal from the PLC to tell the
inverter what speed to go at. The inverter must be calibrated to the analog signal with a tachometer or spindle
encoder. This section only details setting up the PLC side of inverter control. Spindle Digital to Analog output or
DAC is set by the PLC Program based on the commanded Spindle Speed from the 'S' command in G-Code, the
Spindle Override value and the Spindle Gear Ratio. The DAC Spindle Speed command won't be seen by MPU11
until the DoSpindleStart (SV_PLC_FUNCTION_37) goes from off to on or DoSpindleStop (SV_PLC_FUNCTION_38)
goes from on to off. This means that the Spindle Start Key cannot be held down at boot and have the spindle
start as the software starts. This is a good thing. Both or either one of the Start or Stop can be used to control
turning the Spindle on and off. Keep in mind that every time the Start or Stop changes state in the program, the
DAC output will be updated, either turning on or off. This means that in most cases you should choose one of the
two variables to use, rather than both, to avoid confusion.

The Spindle Analog Output bits are mapped to different places on different PLCs. The following table outlines the
MPU11 board and the outputs for the Spindle Analog.

PLC Spindle DAC Outputs

ALLIN1DC 241-252

DC3IOB 17-28

GPIO4D 305-316

Spindle Gear Ranges
The basic PLC programs have two ranges defined. Low Range and High Range. The High Range multiplier is
taken from Parameter 33 and Low Range is taken from Parameter 65.

The example code is for a DC3IOB PLC program. The Inputs and Outputs for each of the standard PLC
programs is detailed in Appendix E.

MPG Operation
The MPG or Manual Pulse Generator can be used to supplement Jog buttons. This section is used to enable the

Page 44

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

MPG mode control in CNC software for the standard Centroid CNC MPG. This includes provisions for up to 4
axis in the basic PLC program with three step amounts. Note that when the MPG is active, with the way this is
programmed, jogging will not work. It can be written into the PLC program that when a Jog Key is pushed to turn
off MPG mode temporarily. Windup mode is used to make sure that the motor moves all of the commanded
steps that the MPG sent. This is not desirable in x100 mode because turning the MPG fast enough will result in
motion well after the MPG has stopped turning.

;===

 MPGStage

;===

; MPG Functions

; Turn on/off Jog Panel MPG LED & on the MPG

IF MPGKey THEN (MpgPD)

IF MpgPD && MPGLED THEN SET MPGManOffFlag_M

IF !SV_MPG_1_ENABLED || (MpgPD && !MPGLED) THEN RST MPGManOffFlag_M

IF (MpgPD && !MPGLED) || (SV_MPG_1_ENABLED && !MPGManOffFlag_M) &&

 !SV_PROGRAM_RUNNING THEN SET MPG_LED_OUT, SET MPGLED

IF (!SV_MPG_1_ENABLED || (MpgPD && MPGLED))

 || SV_PROGRAM_RUNNING THEN RST MPG_LED_OUT, RST MPGLED

;x1, x10, x100 functions

;--X1

IF x1JogKey THEN (x1JogPD)

IF x1JogPD || OnAtPowerUp_M || X1_M || (MPG_Inc_X_1 && MPGLED)

 THEN SET x1JogLED, RST x10JogLED, RST x100JogLED

;--X10

IF x10JogKey THEN (x10JogPD)

IF x10JogPD || X10_M || (MPG_Inc_X_10 && MPGLED)

 THEN RST x1JogLED, SET x10JogLED, RST x100JogLED

;--X100

IF x100JogKey THEN (x100JogPD)

IF x100JogPD || X100_M || (MPG_Inc_X_100 && MPGLED)

 THEN RST x1JogLED, RST x10JogLED, SET x100JogLED

IF !KbIncreaseJogInc_M && !KbDecreaseJogInc_M THEN RST X1_M, RST X10_M,

 RST X100_M

;--MPG 1 Enable

Page 45

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF MPG_AXIS_1 || MPG_AXIS_2 || MPG_AXIS_3 || MPG_AXIS_4 ||

 MPG_AXIS_5 || MPG_AXIS_6 || MPG_AXIS_7 || MPG_AXIS_8

 THEN (SV_MPG_1_ENABLED)

; Select axis to move

IF MPG_AXIS_1 THEN SV_MPG_1_AXIS_SELECT = 1

IF MPG_AXIS_2 THEN SV_MPG_1_AXIS_SELECT = 2

IF MPG_AXIS_3 THEN SV_MPG_1_AXIS_SELECT = 3

IF MPG_AXIS_4 THEN SV_MPG_1_AXIS_SELECT = 4

IF MPG_AXIS_5 THEN SV_MPG_1_AXIS_SELECT = 5

; Select MPG 1 Multiplier

IF (MPG_Inc_X_100) THEN SV_MPG_1_MULTIPLIER = 100

IF (MPG_Inc_X_10) THEN SV_MPG_1_MULTIPLIER = 10

IF (MPG_Inc_X_1) THEN SV_MPG_1_MULTIPLIER = 1

; Disable "Windup" mode IF x100 selected

IF (!MPG_Inc_X_100) THEN (SV_MPG_1_WINDUP_MODE)

Coolant Control
Coolant refers to the Flood and Mist control. Automatic coolant does not allow turning on the outputs unless the
M7/M8 macros are used. Pushing the key to turn off Automatic coolant will then allow manual only control where
a button must be pushed to turn on/off the coolant.

;--Coolant Functions

;--Toggle auto coolant mode

IF CoolAutoManKey || KbTogCoolAutoMan_M THEN (CoolantAutoManualPD)

IF (!CoolAutoManLED && CoolantAutoManualPD) || OnAtPowerUp_M

 THEN SET CoolAutoManLED

IF (CoolAutoManLED && CoolantAutoManualPD)

 THEN RST CoolAutoManLED

;--Report coolant mode to CNC11

IF CoolAutoManLED THEN (SelectCoolAutoMan)

;--Display coolant mode message

;changing to auto coolant mode ;9050 Auto Coolant Selected 2 + 50*256

IF (!CoolAutoManLED && CoolantAutoManualPD)

Page 46

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 THEN AsyncMsg_W = 12802, MSG AsyncMsg_W

;changing to manual coolant mode ;9051 Manual Coolant Selected 2 + 51*256

IF (CoolAutoManLED && CoolantAutoManualPD)

 THEN AsyncMsg_W = 13058, MSG AsyncMsg_W

;--Flood coolant on/off

IF ((CoolFloodKey || KbFloodOnOff_M) && !CoolAutoManLED) ||

 (M8 && CoolAutoManLED) || (DoCycleStart && M8 && CoolAutoManLED)

 THEN (CoolantFloodPD)

IF CoolantFloodPD && !CoolFloodLED THEN SET CoolFloodLED, SET Flood

IF SV_STOP || (CoolantFloodPD && CoolFloodLED) || (!M8 && CoolAutoManLED) ||

 (M8 && !CoolAutoManLED) || DoToolCheck THEN RST Flood, RST CoolFloodLED

IF CoolFloodLED THEN (SelectCoolantFlood)

;--Mist coolant on/off

IF ((CoolMistKey || KbMistOnOff_M)&& !CoolAutoManLED) || (M7 && CoolAutoManLED)

 || (DoCycleStart && M7 && CoolAutoManLED) THEN (CoolantMistPD)

IF (CoolantMistPD && !CoolMistLED) THEN SET Mist, SET CoolMistLED

IF SV_STOP || (CoolantMistPD && CoolMistLED) || (!M7 && CoolAutoManLED) ||

 (M7 && !CoolAutoManLED) || DoToolCheck THEN RST Mist, RST CoolMistLED

IF CoolMistLED THEN (SelectCoolantMist)

Probe Protection
There is some minimal protection built into the default PLC program to try and protect against crashing a probe.
If the Mechanical probe trips while jogging, a probe fault is triggered. Jogging is not allowed in the direction that
was being commanded when the probe tripped until the probe is cleared.

;--

; Probe protection while jogging

;--

IF MechanicalProbe && !JogProbeFault_M && (DoAx1PlusJog || DoAx1MinusJog ||

 DoAx2PlusJog || DoAx2MinusJog || DoAx3PlusJog || DoAx3MinusJog ||

 DoAx4PlusJog || DoAx4MinusJog || DoAx5PlusJog || DoAx5MinusJog)

 THEN (JogProbeFaultPD)

Page 47

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF MechanicalProbe && !JogProbeFault_M && FastSlowLED THEN SET LastProbeMode_M

IF MechanicalProbe && !JogProbeFault_M && !FastSlowLED THEN RST LastProbeMode_M

IF JogProbeFaultPD && !JogProbeFault_M THEN SET JogProbeFault_M, SET DoCycleCancel

IF JogProbeFault_M THEN ErrorCode_W = (PROBE_JOG_FAULT_MSG + 1),

 SET FastSlowLED

IF !MechanicalProbe && JogProbeFault_M && !LastProbeMode_M THEN RST FastSlowLED

IF !MechanicalProbe THEN RST JogProbeFault_M,

 RST Ax1PlusJogDisabled_M,

 RST Ax1MinusJogDisabled_M,

 RST Ax2PlusJogDisabled_M,

 RST Ax2MinusJogDisabled_M

Page 48

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

PLC Optional Sections

This chapter covers optional sections of the PLC will go into detail about setting up the Debounce registers and
inverting Inputs. There are several new features in CNC PLC programs, namely Input debounce and Input
inversion. There is a standard value of 1.5 ms of debounce applied to all applicable PLC inputs and 18 ms
debounce for the jog panel. No inputs are inverted by default. The PLC program can have debounce applied in
excess of the standard value for a particularly noisy input.

Debounce or Invert Inputs
When a physical Input goes from on to off or vice-versa the PLC may see multiple transitions as the input turns
on and off very quickly. Debounce is used to make sure that the Input is really on or really off. Once the Input is
seen as on or off for the specified time, it is considered to be in that state and reported to the PLC program.

The PLCbus Inputs are Debounced at 1.5 ms by default, which is typically a decent value. Sometimes a switch is
extra noisy and require more time to settle into a state. When that happens the debounce System Variables
need to be adjusted. Debounce can be set for the first 240 PLCbus physical Inputs, 112 Jog Panel Inputs and
32 MPU11 Local I/O. They are all done with different System Variables, but the procedure is the same. The new
Debounce values must be set every time the MPU11 boots, so a good place to do this is in the InitialStage.

The Debounce procedure scans at a certain rate, which determines the speed that an Input can be Debounced.
The following chart lays out the scan rate of each of the Input types with Debounce. Keep in mind that the
number of consecutive states of an Input required is determined by dividing the desired Debounce time by the
scan rate. For example to get 1.5 ms of Debounce on a standard Input requires 0.0015/0.0000625 = 24 scans.
For reference 1 ms (millisecond) = 0.001 s and 1 μs (microsecond) = 0.000001 s.

Note that there are two different updates rates for the PLC Inputs depending on where the Input is located. The
Inputs directly on-board the DC3IOB and GPIO4D, for example are updated at 16kHz, whereas the Inputs on the
PLCADD1616 are updated at 4kHz. However, the scan time for debounce (62.5μs) is the same for all PLC and
and PLC expansion devices. This means that even though the expansion devices update 4000 times per second
they are checked at 16000 times per second. Therefore 16000/4000 = 4 times the number of scans must be
done on an expansion board. Instead of doing 24 scans for 1.5 ms of debounce 96 scans must be done.

The minimum Debounce Time is 0 which equates to the base Scan Rate and the maximum Debounce Time of
32768 equates to 2.048 s for PLC and MPU11 Local Inputs and 24.576 s.

Always use Debounce Time 2 or greater when making a custom time because Debounce Time 1 is used
by most Inputs by default and Debounce Time 0 is always 0 and cannot be modified.

System Variable Name Scan Rate (μs) Applies to

SV_PLC_DEBOUNCE_1 to _64 62.5 PLC Inputs

SV_JOG_LINK_DEBOUNCE_1 to _32 750 Jog Panel Inputs

SV_LOCAL_DEBOUNCE_1 to _13 62.5 MPU11 On-board Inputs

The default values for all of the Debounce Inputs is listed below.

Default Debounce Setting
Value

Default Debounce Time
Value

Default Debounce Time
(ms)

PLC Inputs 1 24 1.5

Jog Panel Inputs 1 24 18

MPU11 Local I/O 1* 24 1.5

*Input 770 for the DSP Probe Defaults to 0. Do not change this value.

Each group of System Variables is broken up into two sections. The majority of the System Variables are used
for Debounce Setting to apply to the Inputs and the last few are for setting up the Debounce Time. This means
that there is not a separately named SV for the time and selecting what Input is used, just a different number.
The following table illustrates which System Variables are for Inputs and which are for setting up the time.

Page 49

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

System Variable Range Function

SV_PLC_DEBOUNCE_1 to _60 Select Debounce time to use for each Input

SV_PLC_DEBOUNCE_61 to _64 Choose number of scans to Debounce

SV_JOG_LINK_DEBOUNCE_1 to _28 Select Debounce time to use for each Input

SV_JOG_LINK_DEBOUNCE_29 to _32 Choose number of scans to Debounce

SV_LOCAL_DEBOUNCE_1 to _9 Select Debounce time to use for each Input

SV_LOCAL_DEBOUNCE_10 to _13 Choose number of scans to Debounce

For each of the three types of Debounced Input there are seven different times that can be used in total. This
means that any Input can have one of seven different times applied to it for Debounce.

Each of the System Variables to setup Inputs are broken up into four 8 bit sections devoted to one Input each.
The layout for SV_PLC_DEBOUNCE_1 is illustrated in the following table, but all of the System Variables for setting
up Inputs are divided the same way.

SV_PLC_DEBOUNCE_1 Bits Function

0-7 Input 1 Setting

8-15 Input 2 Setting

16-24 Input 3 Setting

25-31 Input 4 Setting

Each of the 8-bit Input Setting Bytes is laid out according to the following table.

Input Setting Bit Number Function

0 Debounce Time Select 1-7 in binary
1 = Time 1
...
111 = Time 7

1

2

3 reserved

4 reserved

5 reserved

6 Invert Input

7 Force Input On

In order to figure out which Debounce System Variable to use, divide the Input number by four and add one. PLC
Input 211 is on 211 / 4 = 52.75 plus one gives 53.75 for SV_PLC_DEBOUNCE_53. The fractional component tells
which of the four input bytes in the System Variable should be set to get the correct Input. In the example above
0.75 is ¾ which points to Byte 3 out of 4 or bits 16-24.

Setting up the Debounce Time System Variables is more strait forward because there are only four System
Variables that can be setup for each Input type. Each of the System Variables is split into two 16-bit values with
the lowest one in each category being unused. That is why only Debounce times from 1 to 7 are allowed to be
customized. Debounce Time 0 is always set to 0 and cannot be modified. The following table illustrates the
seven available Debounce Times by System Variable.

Debounce Time Sys. Vars. Debounce Time

SV_PLC_DEBOUNCE_61 0 – 15 always set to 0

Page 50

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

16 – 31 Debounce Time 1

SV_PLC_DEBOUNCE_62 0 – 15 Debounce Time 2
16 – 31 Debounce Time 3

SV_PLC_DEBOUNCE_63 0 – 15 Debounce Time 4
16 – 31 Debounce Time 5

SV_PLC_DEBOUNCE_64 0 – 15 Debounce Time 6
16 – 31 Debounce Time 7

There are several ways to setup the Debounce values. One option is to calculate out the bit values in decimal for
all 32-bits and add them all up. Another option is to create each 8-bits for the Debounce Time or Debounce
Setting in a temp Word and Left Shift the value up to the correct place in the Word then add it to the Debounce
System Variable. As an example the following program reads sets up INP6 with a debounce time of 13 ms and
inverts the input. The values are recorded here in binary to show the bits changing. Note that these bits are
written left to right and Msb to Lsb whereas WTB writes bits Lsb to Msb left to right.

Example Input Debounce Setup Program
;Orignal INP6 Debounce Setting Word Value

;0000 0001 0000 0001 0000 0001 0000 0001

;Desired Debounce Setting bits for INP6

;0000 0000 0000 0000 0000 0101 0000 0000

;modified Debounce Setting Word with new bits added in

;0000 0001 0000 0001 0000 0101 0000 0001

;Original Debounce Time Word Value

;0000 0000 0001 1000 0000 0000 0001 1000

;Debounce Time after removing the 16 bits that will be replaced

;0000 0000 0000 0000 0000 0000 0001 1000

;Temp Debounce Time Word with new value shifted into place

;0000 0000 1101 0000 0000 0000 0000 0000

;Final Debounce Time Word with new time value

;0000 0000 1101 0000 0000 0000 0001 1000

;/\

;Program: debounce.src

;Purpose: Example Debounce Setup for INP6

; Set Time 5 for 13 ms., Invert Input

;Date: 20-APR-2010

;\/

;--Variable Defines

Debounce_2_Bits_M IS MEM1 ;display the bits from the Word

Debounce_63_Bits_M IS MEM35 ;display the new bits for the Word

Bit0_M IS MEM73 ; Deb Time Select Bit 0

Page 51

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Bit1_M IS MEM74 ; Deb Time Select Bit 1

Bit2_M IS MEM75 ; Deb Time Select Bit 2

Bit3_M IS MEM76 ; reserved

Bit4_M IS MEM77 ; reserved

Bit5_M IS MEM78 ; reserved

Bit6_M IS MEM79 ; Invert Input

Bit7_M IS MEM80 ; Force Input On

Original_Deb_W IS W1 ;Value read from Deb SV

Temp_Deb_W IS W2 ;Calculated Word value

Final_Deb_W IS W3 ;final combined Word value

Orig_Deb_Time_W IS W4 ;Value read from Deb SV

Shift_Deb_Time_W IS W5 ;value with high 16 bits removed

Temp_Deb_Time_W IS W6 ;Calculated Word value

Final_Deb_Time_W IS W7 ;final combined Word value

InitialStage IS STG1

MainStage IS STG2

;reading INP6 means reading from SV_PLC_DEBOUNCE_?

; ? = 6/4 + 1 = 2.5

;choosing which Byte to set requires looking at the remainder

;the remainder, 0.5 = 2/4 or byte two of four must be set

;use Time 5 to setup the Debounce Time

;5 decimal = 101 binary

;looking at the table gives SV_PLC_DEBOUNCE_63 high 16 bits should be used

;============

InitialStage

;============

IF 1==1 THEN Original_Deb_W = SV_PLC_DEBOUNCE_2 ;read the Settings SV

IF 1==1 THEN Orig_Deb_Time_W = SV_PLC_DEBOUNCE_63 ;read the Time SV

IF 1==1 THEN Final_Deb_W = Original_Deb_W

;zero out the bits that are going to be replaced

IF 1==1 THEN BITRST Final_Deb_W 8

IF 1==1 THEN BITRST Final_Deb_W 9

IF 1==1 THEN BITRST Final_Deb_W 10

Page 52

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF 1==1 THEN BITRST Final_Deb_W 11

IF 1==1 THEN BITRST Final_Deb_W 12

IF 1==1 THEN BITRST Final_Deb_W 13

IF 1==1 THEN BITRST Final_Deb_W 14

IF 1==1 THEN BITRST Final_Deb_W 15

;Setup the 8 bits for the Setting Byte

IF 1==1 THEN SET Bit0_M ;

 ,RST Bit1_M ;binary 5 for Time 5

 ,SET Bit2_M ;

 ,RST Bit3_M ;unused

 ,RST Bit4_M ;unused

 ,RST Bit5_M ;unused

 ,RST Bit6_M ;do not Invert the Input

 ,RST Bit7_M ;do not Force On

;move the 8 bits to a Word

IF 1==1 THEN BTW Temp_Deb_W Bit0_M 8

;shift the values to the 2nd byte as calculated above

IF 1==1 THEN LSHIFT Temp_Deb_W 8

;copy the new 8 bits to the final word

IF 1==1 THEN Final_Deb_W = Final_Deb_W + Temp_Deb_W

;calculate the Debounce scans required for 13 ms

;onboard PLC INP so 0.0130/0.0000625 = 208 scans

IF 1==1 THEN Temp_Deb_Time_W = 208

;shift the bits up to the high 16 bits for the word

IF 1==1 THEN LSHIFT Temp_Deb_Time_W 16

;shift off the high bits from the original Debounce

;registers

IF 1==1 THEN Shift_Deb_Time_W = Orig_Deb_Time_W

IF 1==1 THEN LSHIFT Shift_Deb_Time_W 16

IF 1==1 THEN RSHIFT Shift_Deb_Time_W 16

;combine the low 16 bits and high 16 bits

IF 1==1 THEN Final_Deb_Time_W = Temp_Deb_Time_W + Shift_Deb_Time_W

Page 53

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;save the values back to the SV

IF 1==1 THEN SV_PLC_DEBOUNCE_2 = Final_Deb_W

IF 1==1 THEN SV_PLC_DEBOUNCE_63 = Final_Deb_Time_W

IF 1==1 THEN RST InitialStage, SET MainStage

;============

MainStage

;============

;write out bits of final Word settings for verification

IF 1==1 THEN WTB Final_Deb_W Debounce_2_Bits_M 32

 , WTB Final_Deb_Time_W Debounce_63_Bits_M 32

Setting Inputs High or Low for Testing
The Debounce registers that store the settings for the Inputs can also be used to invert, at the hardware level,
the state of the input. This means that a Normally Closed Input can be turned into a Normally Open Input.

Note that on the DC3IOB Inputs 1-6 and 11 are acted on at the hardware level before the Force and Invert bits
are looked at. This means that Normally Open Limits and E-Stop still cannot be used.

There is also the ability to Force an Input to be SET. This should really never be used outside of debugging on
the bench due to the possibility of masking an input from indicating an error has occurred. Inputs can be Forced
off or RST by setting both the Invert and Force on bits.

Looking at the Table above that explains the layout of the Setting Bytes shows that Bit 7 and 6 are used for
Forcing the Input and Inverting the Input respectively. Time 1 should always be set if no custom Debounce time
is going to be used.

In the following example the same input as above is going to just be Forced On and Inverted, effectively forcing
the input off all the time. This can be verified in PLC Diagnostics by toggling INP6 and seeing that it does not
change.

;Orignal INP6 Debounce Setting Word Value

;0000 0001 0000 0001 0000 0001 0000 0001

;Desired Debounce Setting bits for INP6

;0000 0000 0000 0000 0000 0101 0000 0000

;modified Debounce Time Word with new bits added in

;0000 0001 0000 0001 1100 0001 0000 0001

;/\

;Program: invert.src

;Purpose: Example invert/force Setup for INP6

;\/

;--Variable Defines

Orig_Deb_Bits_O IS OUT1 ;

Page 54

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Debounce_Bits_M IS MEM1 ;display the bits from the Word

Bit0_M IS MEM73 ; Deb Time Select Bit 0

Bit1_M IS MEM74 ; Deb Time Select Bit 1

Bit2_M IS MEM75 ; Deb Time Select Bit 2

Bit3_M IS MEM76 ; reserved

Bit4_M IS MEM77 ; reserved

Bit5_M IS MEM78 ; reserved

Bit6_M IS MEM79 ; Invert Input

Bit7_M IS MEM80 ; Force Input On

Original_Deb_W IS W1 ;Value read from Deb SV

Temp_Deb_W IS W2 ;Calculated Word value

Final_Deb_W IS W3 ;final combined Word value

InitialStage IS STG1

MainStage IS STG2

;begin program

;============

InitialStage

;============

IF 1==1 THEN Original_Deb_W = SV_PLC_DEBOUNCE_2 ;read the Settings SV

IF 1==1 THEN Final_Deb_W = Original_Deb_W

;zero out the bits that are going to be replaced

IF 1==1 THEN BITRST Final_Deb_W 8

IF 1==1 THEN BITRST Final_Deb_W 9

IF 1==1 THEN BITRST Final_Deb_W 10

IF 1==1 THEN BITRST Final_Deb_W 11

IF 1==1 THEN BITRST Final_Deb_W 12

IF 1==1 THEN BITRST Final_Deb_W 13

IF 1==1 THEN BITRST Final_Deb_W 14

IF 1==1 THEN BITRST Final_Deb_W 15

;Setup the 8 bits for the Setting Byte

IF 1==1 THEN SET Bit0_M ;

 ,RST Bit1_M ;binary 1 for Time 1

 ,RST Bit2_M ;

Page 55

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 ,RST Bit3_M ;unused

 ,RST Bit4_M ;unused

 ,RST Bit5_M ;unused

 ,SET Bit6_M ;Invert the Input

 ,SET Bit7_M ;Force On the Input

;move the 8 bits to a Word

IF 1==1 THEN BTW Temp_Deb_W Bit0_M 8

;shift the values to the 2nd byte as calculated above

IF 1==1 THEN LSHIFT Temp_Deb_W 8

;copy the new 8 bits to the final word

IF 1==1 THEN Final_Deb_W = Final_Deb_W + Temp_Deb_W

;save the values back to the SV

IF 1==1 THEN SV_PLC_DEBOUNCE_2 = Final_Deb_W

;write out bits of final Word settings for verification

IF 1==1 THEN WTB Final_Deb_W Debounce_Bits_M 32

IF 1==1 THEN WTB Original_Deb_W Orig_Deb_Bits_O 32

IF 1==1 THEN JMP MainStage

;no MainStage shown because there is nothing to do there for this example

Page 56

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Compiler Errors

There are many ways that a program can be changed so that it does not function as intended. Always start at the
top of the list of errors because fixing earlier problems may fix repeat errors later on. For example if you fail to
define a variable that is used throughout the program, every reference to that variable will generate an error.

If the compiler hangs or doesn't generate any output after ten seconds it is stuck on something and will not
compile the program most likely. Press Ctrl.+c to cancel compilation and undo the last changes if the problem
just started occurring. If you think the changes are valid double check the usage and then send the file before
and after to Tech. Support.

There is a limit of about 1000 characters per line that the compiler can digest so do not go above that limit.
Typically you should stick to 80 characters so that the document can be printed and not cause the printout to
look different than on your monitor.

The easiest to fix are compiler related syntax or expression errors. The first to sections details what potential
errors mean.

Warnings

Already Defined
This message does not cause compilation to fail, but you should address this problem because using two
different variables to do two different things will cause very hard to detect logical errors.

Direct PLC Reference
This Warning occurs when you test or use a specific data type directly by name. An example is using MEM1
instead of defining Test_M IS MEM1 and using Test_M in the program.

General Errors
These errors specify problems with the program that are more serious than an undefined variable. They are not
related to the code in the Program, but the way that the compiler was called.

Malformed Command Line
This error means the the attempt to compile the program failed because no source file was specified.

Unrecognized Command Line Option
An invalid switch was used on the command line. Presently there are two options for switches. Neither of them
should be used except for testing and debugging the compiler itself. The output is not usable as a PLC Program.
The options are -i for outputting a CSV version of the program to be used as an include file and -d is for verbose
debugging of what the compiler does with each token in the program. This may be used when there is a
suspected problem with the compiler.

Error Opening File
The specified source file was not found in the directory that mpucomp was called from. There are two ways to
compile the program. The easiest is to open a command prompt and change directories to the folder where the
source file is located. Then you can issue the command mpucomp(.exe) source.src mpu.plc. On
Windows you must have mpucomp.exe in the same folder as the source file unless you add c:\cncm\bin to your
PATH. In Linux this has been done for you so mpucomp does not need to be in the same folder as the source
file. The other way of compiling a program is to call mpucomp and give the absolute path to the source file

Page 57

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

and/or destination file. For example, the source file is in /cncroot/c and the command line indicates the current
folder is /cncroot. To compile the source file and get the PLC program to the correct folder mpucomp
/cncroot/c/source.src /cncroot/c/cncm/mpu.plc must be executed.

Syntax Errors
These are errors related to specific lines in the PLC program. Usually the offending line and column number is
listed along with the specific error. Sometimes the row is one farther down the program than it should be so look
around the area specified.

Compilation Failed
This message occurs when there are problems in the source file. It is displayed as the last message after other
error messages. This message will not appear if there are too many errors.

Too Many Errors
This message is displayed when more than 25 errors occur at compile time. This can easily happen if you forget
to define a Label and use it often in the program.

Undefined Label
This message occurs when a valid variable name is used without it being defined in the definition section of the
PLC program.

[THEN, Word Type, Stage, Output, Parenthesis] expected
This message is generated when something is expected, but is not found. A Parenthesis is expected on the right
if you put on one the left of a variable or expression.

IF INP1) THEN SET OUT1

End Of File Expected
This message can be generated many different ways, but the meaning is that a line was not written correctly. It
can be caused because the IF at the start of a line was not used after the first IF statement in the program.

[Data Type] Out of Bounds
This message can occur on any Data Type when using the Indexing ability in the compiler. The error is
generated when you make a constant reference to a Data Type number that cannot be accessed. For example if
you try IF 1==1 THEN SET OUT[500000000] you will get this error. It is possible to fool the compiler and index
out of range. See Internal PLC Fault Checking for how to detect this occurring and why it is so catastrophic.

Invalid Action
This error occurs when doing something that is not allowed. This includes trying to store a value into a Bit data
type or a Constant define and failing to put a start location for a Range.

CONST1 IS 1 ;constant value

IF 1==1 THEN CONST1 = 10 ;cannot re-assign constant values

IF 1==1 THEN MEM1 = 10 ;cannot store Word values into Bits

IF 1==1 THEN .. OUT20 ;must include starting point for Range

IF 1==1 THEN SET W1 ;SET cannot be applied to Words

Page 58

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Rung Expected IF
The Keyword IF was not found after a valid STG reference.

STG2

1==1 THEN (OUT1)

Rung Expected THEN
The Keyword THEN is missing from the line specified.

IF 1==1 SET OUT1

JMP Expected STG or FSTG
If you call the JMP command and do not specify what Stage to Jump to, this message is displayed.

System Variable is Read-Only
Attempting to modify a Read-only System Variable will result in this message displayed. The Read-only variables
are ones that CNC11 has write control of here.

MSG Expected Word Reference
This error occurs when you try to use the MSG command with no Word variable or with an invalid data type. If no
data type is specified, then the error will actually show up on the next line of the program and not show the MSG
reference at all in most cases. This occurs because the compiler does not assume that a line feed is the end of a
command. For example the first IF statement spanning two lines in the following code will compile whereas the
second on only one line will not.

IF 1==1 THEN MSG

W1

IF 1==1 THEN MSG INP1

SMSG Expected String Reference
The SMGS functionality expects a string value and anything else causes this error. A string is defined as text
between double quotes.

IF 1==1 THEN SMSG W1 ;not a string

BCD/BIN Expected Word Reference
If you fail to put a Word type variable right after the BCD and BIN command this error occurs.

IF 1==1 THEN BIN MEM1 32

BCD/BIN Cannot Use Bracketed Reference
Indexes are not allowed on Words when doing the BCD or BIN commands.

IF 1==1 THEN BCD W[10]

WTB Expected Word Reference
If you fail to put a Word type variable right after the WTB command this error occurs.

Page 59

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF 1==1 THEN WTB MEM1 32

WTB Expected OUT/MEM Reference
If the Memory or Output location is not specified, this error occurs.

IF 1==1 THEN WTB W1 33

WTB Number of Bits Must be 1-32
When using the WTB command you can specify a number of bits to write. That value must be from 1 to 32. The
incorrect value is shown after the error.

IF 1==1 THEN WTB W1 MEM1 33

BTW Expected Word Reference
If you fail to put a Word type variable right after the BTW command this error occurs.

IF 1==1 THEN BTW MEM1 32

BTW Expected INP/OUT/MEM Reference
If the Input, Memory or Output location is not specified, this error occurs.

IF 1==1 THEN WTB W1 33

BTW Number of Bits Must be 1-32
When using the BTW command you can specify a number of bits to write. That value must be from 1 to 32. The
incorrect value is shown after the error.

IF 1==1 THEN BTW W1 MEM1 33

BITSET/RST Bit Must be 0-31
When using the BITSET or BITRST commands you must specify the bit number to SET or RST. That value must
be from 0 to 31. The incorrect value is shown after the error.

IF 1==1 THEN BITSET W1 43

BITSET/RST Expected an Integer Value
Bits can only be changed by positive Constant Integer numbers so using a floating-point number, negative or
Word value to try and change one will fail.

IF 1==1 THEN BITRST W1 1.5

IF 1==1 THEN BITSET W1 W2

IF 1==1 THEN BITSET W1 -10

BITSET/RST Word Indexing Not Allowed
Using the Index ability is not allowed when doing a BITSET/RST command.

IF 1==1 THEN BITSET W[W2] 2

Page 60

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

BITSET/RST Expected Word Reference
If you fail to put a Word type variable right after the BITSET or BITRST command this error occurs.

IF 1==1 THEN BITSET MEM1 4

BITTST MEM Indexing Not Allowed
Using the Index ability is not allowed when doing a BITTST command.

IF 1==1 THEN BITTST W2 2 MEM[5+1]

BITTST Expected MEM
The last of three arguments to a BITTST must point to a Memory Bit and it was not found or the wrong type was
specified.

if 1==1 then BITTST w1 2 OUT1

BITTST Expected Word Reference
If you fail to put a Word type variable right after the BITTST command this error occurs.

IF 1==1 THEN BITTST INP1 5 MEM1

BITTST Bit Must be 0-31
When using BITTST you must specify the bit number to check in the Word. That value must be from 0 to 31. The
incorrect value is shown after the error.

IF 1==1 THEN BITTST W1 43 MEM1

BITTST Expected Integer Value
Bits can only be changed by positive Constant Integer numbers so using a floating-point number, negative or
Word value to try and change one will fail.

IF 1==1 THEN BITTST W1 1.5 MEM1

IF 1==1 THEN BITTST W1 W2 MEM1

IF 1==1 THEN BITTST W1 -10 MEM1

BITTST Word Indexing Not Allowed
Using the Index ability is not allowed when doing a BITTST command.

IF 1==1 THEN BITTST W[2+5] 2

LSHIFT/RSHIFT Bit Must be 0-31
When using the LSHIFT/RSHIFT commands you must specify the number of bits to shift. That value must be
from 0 to 31. The incorrect value is shown after the error.

IF 1==1 THEN LSHIFT W1 99

LSHIFT/RSHIFT Expected Integer Value
Bits can only be changed by positive Constant Integer numbers so using a floating-point number, negative or
Word value to try and change one will fail.

Page 61

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF 1==1 THEN LSHIFT W1 1.5

IF 1==1 THEN LSHIFT W1 W2

IF 1==1 THEN LSHIFT W1 -10

LSHIFT/RSHIFT Word Indexing Not Allowed
Using the Index ability is not allowed when doing a LSHIFT/RSHIFT command.

IF 1==1 THEN LSHIFT W[10+2] 2

LSHIFT/RSHIFT Expected Word Reference
If you fail to put a Word type variable right after the LSHIFT/RSHIFT command this error occurs.

IF 1==1 THEN LSHIFT MEM1 4

Constant Integer Expression Label Not Found
If you reference a constant when defining other constants, but the referenced constant does not exist yet you will
get this message. The following example will generate this error.

CONST2 IS 2*CONST3

Constant Integer Expression Expected Right Parenthesis
This error is generated when a left parenthesis is used to declare a constant, but the right parenthesis is left off.

CONST1 IS (10+2

Constant Integer Factor Expected
Constant math can only be done on Integer values. Putting a Floating-point value in a constant define that does
math will give this error.

CONST1 IS (10+2.2)

Constant Integer Expression Label Does Not Reference an Integer
If you create a Constant that stores a floating-point value and then use it in the declaration of an Integer
Constant you will get this message.

CONST1 IS 11.2

CONST2 IS (CONST1/2)

Constant Integer Expression Label not Found
This error only occurs when a previous Constant expression definition is invalid and it is referenced by another
Constant expression definition.

CONST1 IS (11.2) ;invalid because of parentheses, only constant numbers allowed

CONST2 IS (CONST1/2);invalid CONST1 causes another error.

Relational Operator Expected
A comparison of data types that need a Relational Operator used on them to evaluate to true or false is needed
rather than the used operator.

Page 62

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF W1 = W2 THEN SET OUT1 ;assignment not allowed before THEN

IF !W2 THEN SET OUT2 ;Logical Operator not allowed on Words

System Variable Bits Cannot be Used With '..'
The Range selector cannot be used on any System Variables.

IF 1==1 THEN SET SV_ENABLE_AXIS_1 .. SV_ENABLE_AXIS_8

Range Extension Expected OUT/MEM/STG/FSTG/T
When specifying a Range, the end of the Range was not specified. This error will be shown on the next line after
the error actually occurs. One of the listed types must be used to finish the Range. It must be the same type that
is on the left of the Range select.

IF 1==1 THEN SET OUT1 ..

Range Error. End is Before Start
The Range selectors were specified out of order. They must be used from lower to high bits.

IF 1==1 THEN SET OUT10 .. OUT1

SET/RST Expected OUT/MEM/STG/FSTG/T/Modifiable SV
This message is generated when you try to SET or RST something that the action cannot be applied to or nothing
is supplied. Inputs, One-Shots, Words, and Word type System Variables are all examples of things that cannot
be SET or RST.

IF 1==1 THEN SET

IF 1==1 THEN SET INP1

IF 1==1 THEN SET PD1

Coil Expected PD/OUT/MEM/Modifiable SV
This error occurs when trying to use Coils on Data Types that cannot be SET/RST. This includes Word types and
Timers. There is no point turning on a Timer to check that only lasts one pass of the PLC program. Words can
have bits in them SET and RST using BITSET and BITRST.

IF INP1 THEN (T2)

Expected Right Bracket
This message occurs when a left bracket is used and a right one is not found.

if 1==1 then set out[10+3

if 1==1 then set out[10+3)]

Expected Left Bracket
This error occurs because a variable that can use Indexing had a space after the variable name and no bracket
was found. The compiler then expects to see a Left Bracket. You may not be doing an Index reference at all, but
merely had a space where there should not be one.

IF 1==1 THE SET OUT 10]

IF 1==1 THEN BTW W 3] 10

Page 63

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Bad Definition
The attempt at defining a variable is not written correctly. Brackets and negative numbers are not allowed.
Constant defines are used for messaging mostly.

Const is [10] ; brackets cannot be used in the definition section of a PLC program

Number Expected Right Parenthesis
A right Parenthesis was expected in a math calculation in the Program.

IF 1==1 THEN W1 = (10 + 50

Numerical Factor Expected Right Parenthesis
Any command such as ABS, SIN, etc. is listed and then the calculation to be done is in parentheses afterwards. If
the parenthesis on the right is missing, this error occurs.

if 1==1 then W1 = abs (10*5

Numerical Factor Expected Left Parenthesis
Any command such as ABS, SIN, etc. is listed and then the calculation to be done is in parentheses afterwards. If
the parenthesis on the left is missing, this error occurs.

if 1==1 then FW1 = sin (3.14159265/180

ATAN2/POW Expected Right Parenthesis
In either an ATAN2 or POW operation, the right parenthesis was left off.

IF 1==1 THEN FW1 = ATAN2 (3.141592/180, 3.141592

ATAN2/POW Expected Comma
In either an ATAN2 or POW operation, the right parenthesis was left off.

IF 1==1 THEN FW1 = POW (1 1)

ATAN2/POW Expected Left Parenthesis
In either an ATAN2 or POW operation, the right parenthesis was left off.

IF 1==1 THEN FW1 = ATAN2 3.141592/180, 3.141592)

Expected Right Parenthesis
This error occurs when using a Coil on an Output or Memory Bit when there is a left parenthesis and not a right.

IF 1==1 THEN (OUT1

Boolean Factor Expected Right Parenthesis
In a Boolean check using parentheses, the right parenthesis was left off.

IF (INP1 THEN SET OUT1

Page 64

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Assignment Error
This error occurs when a value is getting stored to a variable and it cannot be completed. One example is to
Index to a floating-point variable.

IF INP1 THEN W[10.4] = 1

Page 65

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Application Examples

These examples strive to give examples of using some of the various PLC functionality that isn't used in a
standard PLC program. The examples are not meant to be useful in what is accomplished, but rather in how it is
accomplished.

Toggle an Output Every Second
Pseudo-code

In InitialStage Second_On_T = 1000, Second_Off_T = 1000, SET Second_Off_T

IF Second_On_T THEN RST Second_On_T, SET Second_Off_T, RST OUT1

IF Second_Off_T THEN RST Second_Off_T, SET Second_On_T, SET OUT1

Aux Key Jogging
Pseudo-code

IF Aux2 THEN Y+_Jog

IF Aux8 THEN Y-_Jog

IF Aux4 THEN X-_Jog

IF Aux6 THEN X+_Jog

IF Aux3 THEN Z+_Jog

IF Aux9 THEN Z-_Jog

IF Aux1 THEN W+_Jog

IF Aux7 THEN W-_Jog

Aux Key Override of M-Code
Pseudo-code

IF M-Code && (CNC_PROG_RUNNING || AUX14) THEN SET M-Code_Stage

Wait One Second Before Jogging on Key Press
Pseudo-code

IF !(all jog keys) THEN RST Jog_T

IF any jog key THEN SET Jog_T

IF Jog_T THEN DO Ax#_Jog

Interpret Enter Key as Cycle Start in MDI*
*Note that Centroid does not recommend doing this. It is merely an example of what is possible as far as
customizing the User experience. Often, after typing a command in MDI it is natural to hit Enter to try to run the
line, but that merely causes a prompt to push Cycle Start to appear. With this change that will not happen. This
functionality should only be allowed when in MDI to prevent unexpected motion.

Pseudo-code

IF MDI_MODE && AllowKBJog && Kb_Enter_Key THEN Cycle_Start

Page 66

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Count Machine On Time
Use a Timer to count one day and then increment a word. Update P171 every 30 min. to keep track of the value.
Read the value of P170 in the Initial stage and increment values to it.

Page 67

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Custom M-Codes

Using M94/M95 Bits
Pick an unused M94/M95 bit and assign it the name of the custom M-Code. Create an mfuncXXX.mac file that
has the same number as the assigned M-Code. Put whatever you want in the M-Code and if the PLC program
needs to do something, put code in to check for MXXX being SET or RST.

Using One M94/M95 Bit and a Parameter
In the custom M-Code SET the bit with M94 and G10 a parameter in the 171-177 range to a different binary value
for each M-Code. Use 1, 2, 4, 8, 16, 32, etc. so that you can use BITTST. Alternatively, you can just use decimal
numbers and check Parameter == 1, ==2, ==3, etc.

Customizing Standard M-Codes
In the basic MPU11 PLC programs there are four “customized” M-Codes by default. They are for Spindle
directions and Coolant. The reason that they are considered custom is that rather than using the built in CNC
software functionality, files were created to extend the original functionality. Now there is a message printed on
screen that halts execution if an auto spindle or coolant function is called and prompts the user to put the control
in auto mode. This can be done for many of the M-Codes to expand the usability of or modify the given feature.
The following example shows how the M3 and M4 M-Codes were changed.

Automatic Spindle On/Off – M3/M4
When a default M3 is commanded the Spindle should start spinning in the clockwise direction. If the control is in
manual spindle mode though, the spindle will not turn on and program execution will continue like everything is
fine. This is bad, so a warning should be given to the user and execution paused. The same holds true for
Automatic Coolant which is why the custom M7 and M8 are needed.

;-------
;M3 macro
; Displays message to select auto spindle mode if it is not SET
;-------
;if searching or backplotting a program, skip the macro
IF #4202 || #4201 THEN GOTO 200
M95 /2 ; turn off CCW spindle
M94 /1 ;turn on CW spindle

;if AutoSpindle i.e. OUT1058 (a.k.a. JPO2) is set, exit the Macro
IF #61058 THEN GOTO 200
G4 P.1
#140 = 1.5
N100

; If not in AutoSpindle Mode display a message and wait
IF !#61058 THEN M225 #140 "Please Select Auto Spindle To Continue!"
G4 P.5
IF !#61058 THEN GOTO 100
N200

Page 68

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Troubleshooting and Changing PLC Programs

This chapter contains some suggestions for debugging problems in your PLC program.

Write Down and Think Through Changes to the Program
Before making any changes to a PLC Program you should always take a report. Write out as specifically as
possible the exact functionality that is to be implemented. This potentially includes timeouts, fault conditions,
interactions with other Inputs and Outputs, messages that will need to be shown to the User, etc.

PLC Diagnostic Screen
When at the main screen, push Alt.-i to cause the PLC Diagnostic screen to appear. It appears over running jobs
so it should not be left on all the time, especially if there are user prompts in the program. The red and green
dots represent Inputs, Outputs, Memory and Stage Bits. Red means the Bit is off or open and Green means the
Bit is closed or on. This is true in all cases for the Bits. Keep in mind that setting the Invert or Force Debounce
bits will change the way the Inputs are reported to the PLC program and thus the PLC Diagnostic screen.

The screen shows the state of Bits 80 at a time for the entire range available for that Bit type and 12 Words per
page. All 1312 available Inputs and Outputs are shown as are all 1024 Memory Bits and 256 Stages. Presently
the 44 Words that are sent up to CNC11 are shown as well. This means that all the Jog Panel buttons and LEDs
as well as Spindle DAC outputs can be seen without mirroring them to the 1 to 80 range. This is true as of
CNC11 3.0 rev84 beta release.

Future improvements include adding FW, DW, DFW, FSTG, and Timer display to the screen.

PLC Bit-State Dump
When the PLC Diagnostic screen is showing, pushing the Ctrl.- i key combination will cause the state of all the
Bit variables to be stored to a file called plcstate.txt. This file is overwritten every time the operation is performed.
This feature will be implemented in the future.

DUMP
Use the DUMP PLC command to print all of the values of the first 64 Word type variables to disk. This can be
called at any time to check status words or ATC bin position in a certain stage. Make sure to call this infrequently
because it does take quite a long time to write to disk compared to the time to execute the PLC program once.

Echo to a Memory Bit
Transient signals that are on and then quickly off may not show up reliably on the PLC Diagnostic screen long
enough to see because the display only updates 30 times/second. In this case, to verify that the bit is changing
at all you can SET a Memory Bit if the Bit in question ever gets SET or RST. It is a good idea to incorporate the
ability to RST these diagnostic Bits into an unused Aux Key so that you do not have to power off the system to
RST them.

Use Stages
Group new features into a Stage so that it can be turned on and off to check for problems. Use more stages for
more complex features to narrow down where you need to troubleshoot.

Page 69

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Communication In/Out Faults

DriveBus
These faults occur when the communication on the DriveBus is disrupted. The DriveBus goes out on fibers 4
and 5 from the MPU11 and across the Drive Communication In/Out wire connections on the ALLIN1DC, Optic4
and DC3IOB. If any of these connections exist and are checked in the PLC program correctly, they will help
diagnose connection problems.

PLCBus
The PLCBus also should be checked in the PLC program to make sure that communication is in a good state.
There should be checks for the Fibers 1 and 3 and miniPLCBus connections if expansion boards are used.

Page 70

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Appendix A: Example PLC program

ALLIN1DC DC system example
This is the basic PLC program using an ALLIN1DC drive and PLC.

;---
; File: allin1dc-basic.src
; Programmer: Scott Pratt, Keith Dennison, Marc Leonard
; Date: 7 April 2010
; Purpose: PLC for MPU11 and allin1dc + keyboard jog
; Requires: Requires CNC11 R83+
;
; $Id: allin1dc-basic.src 510 2011-03-02 11:05:28Z marc $
;
; Changes: 101123 KD - Added Aux 10, 11, 12 assignments to the gray Aux keys.
;
;NOTE Changes to keyboard jogging bmp needed. See MEM400+
; "Invalid key" messages will need to be suppressed

; Mpu11 based systems have the ability to invert, force and/or select a custom
; debounce time on PLC inputs 1-240 using SV_PLC_DEBOUNCE_1-SV_PLC_DEBOUNCE_64.
; Jog Panel inputs are modified in the same manner using SV_JOG_LINK_DEBOUNCE_1
; -SV_JOG_LINK_DEBOUNCE_64. See system variable section for more information.

; The Mpu11 board includes connections for several types of auxiliary I/O.
; 4 digital "high speed" inputs (INP769-772) typically used for probe/TT1
; related functions, 3 auxiliary digital inputs (INP784-786), 11 Digital inputs
; used for MPG increment and axis selection and 2 auxiliary digital outputs
; (Out770-771).

; ALLIN1DC Physical I/O: While each ALLIN1DC that is installed reserves (maps)
; 16 inputs and 16 Outputs, only 16 inputs and 9 outputs are accessible through
; hardware.

; Digital Inputs: The ALLIN1DC provides 16 inputs, 10 of which are available for
; general purpose use. The first 6 inputs (1-6) are dedicated for limit switch
; use and must be either wired to a NC limit switch or defeated. All 16 inputs
; can be configured (in banks of 4) for 5, 12 or 24VDC operation in either a
; sourcing or sinking configuration.

; Analog input: The ALLIN1DC provides a single 12 bit analog input which is
; mapped to inputs 241-252. LSB = 241. This input can be configured for the
; following input:

; 1. 0 - 5VDC
; 2. 0 - 10VDC
; 3. -5 - +5VDC
; 4. -10 - +10VDC

; Please see the ALLIN1DC manual for configuration information

; Outputs: The ALLIN1DC has 9 relay contact closure outputs. Outputs 1-7 are
; are SPST type relays while Outputs 8 & 9 are SPDT type relays.

; Analog outputs: The 12 bit 0-10VDC analog output on the ALLIN1DC

Page 71

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

; is mapped to outputs 241-252. NOTE: The spindle speed command that comes down
; from the PC (SV_PC_DAC_SPINDLE_SPEED) is a 16 bit integer value from 0-65535
; that must be converted to a 12 bit value from 0-4095 by the PLC. The PLC
; handles gear ranges by looking at the state of inputs and reading parameters
; (or hard coded values) to determine the ratio needed for adjusting the spindle
; speed display system variable

;--
; CONSTANT DEFINITIONS
;--

PLC_EXECUTOR_FLT_MSG IS 257; (1+256)

AXIS1_INFLT IS 1282;(2+256*5) Fiber to MPU11 has a problem
AXIS2_INFLT IS 1538;(2+256*6)
AXIS3_INFLT IS 1794;(2+256*7)
AXIS4_INFLT IS 2050;(2+256*8)
AXIS5_INFLT IS 2306;(2+256*9)
AXIS6_INFLT IS 2562;(2+256*10)
AXIS7_INFLT IS 2818;(2+256*11)
AXIS8_INFLT IS 3074;(2+256*12)

AXIS1_OUTFLT IS 3330;(2+256*13) Fiber to axis drive has a problem
AXIS2_OUTFLT IS 3586;(2+256*14)
AXIS3_OUTFLT IS 3842;(2+256*15)
AXIS4_OUTFLT IS 4098;(2+256*16)
AXIS5_OUTFLT IS 4354;(2+256*17)
AXIS6_OUTFLT IS 4610;(2+256*18)
AXIS7_OUTFLT IS 4866;(2+256*19)
AXIS8_OUTFLT IS 5122;(2+256*20)

AXIS_FLT_CLR IS 5378;(2+256*21)

PLC_INFLT IS 5634;(2+256*22)
PLC_OUTFLT IS 5890;(2+256*23)
PLC_FLT_CLR IS 6146;(2+256*24)

SPINDLE_FAULT_MSG IS 7681;(1+256*30)
PROBE_FAULT_MSG IS 8705;(1+256*34)

KB_JOG_MSG IS 8962;(2+256*35)

LUBE_FAULT_MSG IS 9217;(1+256*36)
LUBE_WARNING_MSG IS 9218;(2+256*36)
PROBE_JOG_FAULT_MSG IS 9473;(1+256*37)

MIN_SPEED_MSG IS 9730;(2+256*38)
SOFTWARE_EXIT_MSG IS 9985;(1+256*39)

MSG_CLEARED_MSG IS 25345;(1+256*99)

;--
; INPUT DEFINITIONS
; Closed = 1 (green) Open = 0 (red)
;--
Ax1_MinusLimitOk IS INP1
Ax1_PlusLimitOk IS INP2
Ax2_MinusLimitOk IS INP3

Page 72

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Ax2_PlusLimitOk IS INP4
Ax3_MinusLimitOk IS INP5
Ax3_PlusLimitOk IS INP6
;spare IS INP7
;spare IS INP8
LubeOk IS INP9 ;Lube is "ok" when input is closed (*)
SpindleInverterOk IS INP10 ;Inverter is "ok" when input is closed (*)
EStopOk IS INP11
SpinLowRange IS INP12
;spare IS INP13
;spare IS INP14
;spare IS INP15
;spare IS INP16

;If a PLC expansion board (PLCADD1616) is used, the additional inputs will
;begin at input 17.

; (*) If SpindleInverterOk or LubeOk is moved to a different input, then
; the P178 inversion logic at the start of MainStage will also need
; to be updated, to invert the correct input.

;--
; INP769 - INP784 encompass the MPU11 onboard input connections
; which are generally used for MPG and probing functions.
;--
MechanicalProbe IS INP769
DSPProbe IS INP770
ProbeDetect IS INP771
ProbeAux IS INP772
MPG_Inc_X_1 IS INP773
MPG_Inc_X_10 IS INP774
MPG_Inc_X_100 IS INP775
MPG_AXIS_1 IS INP776
MPG_AXIS_2 IS INP777
MPG_AXIS_3 IS INP778
MPG_AXIS_4 IS INP779
MPG_AXIS_5 IS INP780
MPG_AXIS_6 IS INP781
MPG_AXIS_7 IS INP782
MPG_AXIS_8 IS INP783

;--
; ALLIN1DC PLC Output Definitions
; Logic 1 = OUTPUT ON (Green), 0 = OUTPUT OFF (Red)
;--
NoFaultOut IS OUT1 ;SPST Type
Lube IS OUT2 ;SPST Type
Flood IS OUT3 ;SPST Type
Mist IS OUT4 ;SPST Type
InverterResetOut IS OUT5 ;SPST Type
Clamp IS OUT6 ;SPST Type - M10 On, M11 Off & Aux7
SpindleEnableOut IS OUT7 ;SPST Type
SpindleDirectionOut IS OUT8 ;SPDT Type
; IS OUT9 ;SPDT Type

;Outputs 10-16 are unavailable

Page 73

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

; These bits control the actual analog hardware output on the ALLIN1DC.
; Output = 12bit (0-4095) 0-10VDC.
SpinAnalogOutBit0 IS OUT241
SpinAnalogOutBit1 IS OUT242
SpinAnalogOutBit2 IS OUT243
SpinAnalogOutBit3 IS OUT244
SpinAnalogOutBit4 IS OUT245
SpinAnalogOutBit5 IS OUT246
SpinAnalogOutBit6 IS OUT247
SpinAnalogOutBit7 IS OUT248
SpinAnalogOutBit8 IS OUT249
SpinAnalogOutBit9 IS OUT250
SpinAnalogOutBit10 IS OUT251
SpinAnalogOutBit11 IS OUT252

MPG_LED_OUT IS OUT769

;--
; Memory Bit Definitions
;--
PLCExecutorFault_M IS MEM1
SoftwareNotReady_M IS MEM2 ; 0 = okay, 1 = CNC11 not running/ready
MPGManOffFlag_M IS MEM3

Ax1PlusJogDisabled_M IS MEM11
Ax1MinusJogDisabled_M IS MEM12
Ax2PlusJogDisabled_M IS MEM13
Ax2MinusJogDisabled_M IS MEM14

MasterEnable_M IS MEM40 ; 1 = enabled (echo of SV_MASTER_ENABLE)
PLCBus_Oe_M IS MEM41 ; 1 = okay, 0 = incoming PLC fiber problem
PLCBusExtDevEn_M IS MEM42 ; 1 = okay, 0 = PLC reports bad output fiber
ADD1616Ok1_M IS MEM43

Stop_M IS MEM47 ; 0 = okay, 1 = fault (echo of SV_STOP)
Stall_M IS MEM48 ; 0 = okay, 1 = stall (echo of SV_STALL_ERROR)
LubeFault_M IS MEM49 ; 0 = okay, 1 = lube fault
PLCFault_M IS MEM50 ; 0 = okay, 1 = PLC fault
AxisFault_M IS MEM51 ; 0 = okay, 1 = drive or drive fiber problem
DriveComFltIn_M IS MEM52 ; 0 = okay, 1 = incoming drive fiber problem
DriveComFltOut_M IS MEM53 ; 0 = okay, 1 = outgoing drive fiber problem
ProbeFault_M IS MEM54 ; 0 = okay, 1 = tried to start spindle w/probe
JogProbeFault_M IS MEM55 ; 0 = okay, 1 = tripped probe while jogging
SpindleFault_M IS MEM56 ; 0 = okay, 1 = spindle drive fault
OtherFault_M IS MEM57

KbJpActive_M IS MEM60 ; aka SV_PC_VIRTUAL_JOGPANEL_ACTIVE

Axis1FiberOk_M IS MEM70
Axis2FiberOk_M IS MEM71
Axis3FiberOk_M IS MEM72
Axis4FiberOk_M IS MEM73
Axis5FiberOk_M IS MEM74
Axis6FiberOk_M IS MEM75
Axis7FiberOk_M IS MEM76
Axis8FiberOk_M IS MEM77
ProbeMsgSent_M IS MEM78
true IS MEM81

Page 74

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

SpinLowRange_M IS MEM82
SpinHighRange_M IS MEM85
SpindlePause_M IS MEM86

DisableKbInput_M IS MEM102 ;If 1, disable kb jogging
AllowKbInput_M IS MEM103 ;If 1, allow kb jogging
JogOverOnly_M IS MEM105
KbOverOnly_M IS MEM106
UsingFeedrateKnob_M IS MEM117
WaitingForSleepTimer_M IS MEM118
X1_M IS MEM119
X10_M IS MEM120
X100_M IS MEM121

OnAtPowerUp_M IS MEM200
LimitTripped IS MEM208
LastProbeMode_M IS MEM210

InvLubeOk_M IS MEM300 ; P178 Bit 0 (1) ; add 1 to parm 178 if
 ; lubeOk is NO
InvSpinInverterOk_M IS MEM301 ; P178 Bit 1 (2) ; Add 2 to parm 178 if
 ; InvSpinInverterOk_M is NO

KbCycleStart_M IS MEM400 ; "alt" + "s"
KbCycleCancel_M IS MEM401 ; escape
KbToolCheck_M IS MEM402 ; "Ctrl" + "t"
KbTogSingleBlock_M IS MEM403 ; "Ctrl" + "b"
KbIncreaseJogInc_M IS MEM404 ; "Insert"
KbDecreaseJogInc_M IS MEM405 ; "Delete"
KbIncFeedOver_M IS MEM406 ; "ctrl" + "keyboard "+" ("=")
KbDecFeedOver_M IS MEM407 ; "ctrl" + "keyboard "-"
KbFeedOver100_M IS MEM450 ; "ctrl" + "\"
KbTogIncContJog_M IS MEM408 ; "ctrl" + "i"
KbTogFastSlowJog_M IS MEM409 ; "ctrl" + "f"
KbJogAx1Plus_M IS MEM411 ; right arrow + KbJpActive_M
KbJogAx1Minus_M IS MEM412 ; left arrow + KbJpActive_M
KbJogAx2Plus_M IS MEM413 ; up arrow + KbJpActive_M
KbJogAx2Minus_M IS MEM414 ; down arrow + KbJpActive_M
KbJogAx3Plus_M IS MEM415 ; page up + KbJpActive_M
KbJogAx3Minus_M IS MEM416 ; page down + KbJpActive_M
KbJogAx4Plus_M IS MEM417 ; "home"+ KbJpActive_M
KbJogAx4Minus_M IS MEM418 ; "end" + KbJpActive_M
KbAux1Key_M IS MEM419 ; "ctrl" + "F1"
KbAux2Key_M IS MEM420 ; "ctrl" + "F2"
KbAux3Key_M IS MEM421 ; "ctrl" + "F3"
KbAux4Key_M IS MEM422 ; "ctrl" + "F4"
KbAux5Key_M IS MEM423 ; "ctrl" + "F5"
KbAux6Key_M IS MEM424 ; "ctrl" + "F6"
KbAux7Key_M IS MEM425 ; "ctrl" + "F7"
KbAux8Key_M IS MEM426 ; "ctrl" + "F8"
KbAux9Key_M IS MEM427 ; "ctrl" + "F9"
KbAux10Key_M IS MEM428 ; "ctrl" + "F10"
KbAux11Key_M IS MEM429 ; "ctrl" + "F11"
KbAux12Key_M IS MEM430 ; "ctrl" + "F12"
KbTogRapidOver_M IS MEM431 ; "ctrl" + "r"
KbTogSpinAutoMan_M IS MEM432 ; "ctrl" + "a"
KbSpinCW_M IS MEM433 ; "ctrl" + "c"

Page 75

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

KbSpinCCW_M IS MEM434 ; "ctrl" + "w"
KbSpinStart_M IS MEM435 ; "ctrl" + "s"
KbSpinStop_M IS MEM436 ; "ctrl" + "q"
KbFloodOnOff_M IS MEM437 ; "ctrl" + "n"
KbMistOnOff_M IS MEM451 ; "ctrl" + "k"
KbTogCoolAutoMan_M IS MEM438 ; "ctrl" + "m"
KbFeedHold_M IS MEM439 ; space bar
KbIncSpinOver_M IS MEM440 ; "ctrl" + ">" (.)
KbDecSpinOver_M IS MEM441 ; "ctrl" + "<" (,)
KbSpinOver100_M IS MEM442 ; "ctrl" + "?" (/)

;--
; Jog panel keys are referenced as JPI1 through JPI256. Alternatively,
; jog panel inputs can also be referenced as INP1057-INP1312.
;--
; Definitions follow JOGBOARD layout top to bottom, left to right

SpinOverPlusKey IS JPI1 ; Row 1 Column 1
SpinAutoManKey IS JPI2 ; Row 1 Column 2
Aux1Key IS JPI3 ; Row 1 Column 3
Aux2Key IS JPI4 ; Row 1 Column 4
Aux3Key IS JPI5 ; Row 1 Column 5

SpinOver100Key IS JPI6 ; Row 2 Column 1
SpinCWKey IS JPI7 ; Row 2 Column 2
Aux4Key IS JPI8 ; Row 2 Column 3
Aux5Key IS JPI9 ; Row 2 Column 4
Aux6Key IS JPI10 ; Row 2 Column 5

SpinOverMinusKey IS JPI11 ; Row 3 Column 1
SpinCCWKey IS JPI12 ; Row 3 Column 2
Aux7Key IS JPI13 ; Row 3 Column 3
Aux8Key IS JPI14 ; Row 3 Column 4
Aux9Key IS JPI15 ; Row 3 Column 5

SpinStopKey IS JPI16 ; Row 4 Column 1
SpinStartKey IS JPI17 ; Row 4 Column 2
Aux10Key IS JPI18 ; Row 4 Column 3
Aux11Key IS JPI19 ; Row 4 Column 4
Aux12Key IS JPI20 ; Row 4 Column 5

CoolAutoManKey IS JPI21 ; Row 5 Column 1
CoolFloodKey IS JPI22 ; Row 5 Column 2
CoolMistKey IS JPI23 ; Row 5 Column 3
Aux13Key IS JPI24 ; Row 5 Column 4
Aux14Key IS JPI25 ; Row 5 Column 5

IncrContKey IS JPI26 ; Row 6 Column 1
x1JogKey IS JPI27 ; Row 6 Column 2
x10JogKey IS JPI28 ; Row 6 Column 3
x100JogKey IS JPI29 ; Row 6 Column 4
MPGKey IS JPI30 ; Row 6 Column 5

Ax4PlusJogKey IS JPI31 ; Row 7 Column 1
UnusedR7C2Key IS JPI32 ; Row 7 Column 2
Ax2PlusJogKey IS JPI33 ; Row 7 Column 3
UnusedR7C4Key IS JPI34 ; Row 7 Column 4
Ax3PlusJogKey IS JPI35 ; Row 7 Column 5

Page 76

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

UnusedR8C1Key IS JPI36 ; Row 8 Column 1
Ax1MinusJogKey IS JPI37 ; Row 8 Column 2
FastSlowKey IS JPI38 ; Row 8 Column 3
Ax1PlusJogKey IS JPI39 ; Row 8 Column 4
UnusedR8C5Key IS JPI40 ; Row 8 Column 5

Ax4MinusJogKey IS JPI41 ; Row 9 Column 1
UnusedR9C2Key IS JPI42 ; Row 9 Column 2
Ax2MinusJogKey IS JPI43 ; Row 9 Column 3
UnusedR9C4Key IS JPI44 ; Row 9 Column 4
Ax3MinusJogKey IS JPI45 ; Row 9 Column 5

CycleCancelKey IS JPI46 ; Row 10 Column 1
SingleBlockKey IS JPI47 ; Row 10 Column 2
ToolCheckKey IS JPI48 ; Row 10 Column 3
FeedHoldKey IS JPI49 ; Row 10 Column 4
CycleStartKey IS JPI50 ; Row 10 Column 5

;--
; Feedrate Override Knob
;--
JpFeedOrKnobBit0 IS JPI193
JpFeedOrKnobBit1 IS JPI194
JpFeedOrKnobBit2 IS JPI195
JpFeedOrKnobBit3 IS JPI196
JpFeedOrKnobBit4 IS JPI197
JpFeedOrKnobBit5 IS JPI198
JpFeedOrKnobBit6 IS JPI199
JpFeedOrKnobBit7 IS JPI200
JpFeedOrKnobBit8 IS JPI201 ; Current jog panels send first 8 bits
JpFeedOrKnobBit9 IS JPI202 ; unused
JpFeedOrKnobBit10 IS JPI203 ; unused
JpFeedOrKnobBit11 IS JPI204 ; unused
JpFeedOrKnobBit12 IS JPI205 ; unused
JpFeedOrKnobBit13 IS JPI206 ; unused
JpFeedOrKnobBit14 IS JPI207 ; unused
JpFeedOrKnobBit15 IS JPI208 ; unused

;--
; Jog Panel Output (LED) Definitions
; Jog Panel LED's can be addressed as JPO1 - JPO256
; OR
; OUT1057 - OUT1312
;--
; Definitions follow JOGBOARD layout top to bottom, left to right
;
SpinOverPlusLED IS JPO1 ; Row 1 Column 1
SpinAutoModeLED IS JPO2 ; Row 1 Column 2
Aux1LED IS JPO3 ; Row 1 Column 3
Aux2LED IS JPO4 ; Row 1 Column 4
Aux3LED IS JPO5 ; Row 1 Column 5

SpinOver100LED IS JPO6 ; Row 2 Column 1
SpindleCWLED IS JPO7 ; Row 2 Column 2
Aux4LED IS JPO8 ; Row 2 Column 3
Aux5LED IS JPO9 ; Row 2 Column 4
Aux6LED IS JPO10 ; Row 2 Column 5

Page 77

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

SpinOverMinusLED IS JPO11 ; Row 3 Column 1
SpindleCCWLED IS JPO12 ; Row 3 Column 2
Aux7LED IS JPO13 ; Row 3 Column 3
Aux8LED IS JPO14 ; Row 3 Column 4
Aux9LED IS JPO15 ; Row 3 Column 5

SpinStopLED IS JPO16 ; Row 4 Column 1
SpinStartLED IS JPO17 ; Row 4 Column 2
Aux10LED IS JPO18 ; Row 4 Column 3
Aux11LED IS JPO19 ; Row 4 Column 4
Aux12LED IS JPO20 ; Row 4 Column 5

CoolAutoManLED IS JPO21 ; Row 5 Column 1
CoolFloodLED IS JPO22 ; Row 5 Column 2
CoolMistLED IS JPO23 ; Row 5 Column 3
Aux13LED IS JPO24 ; Row 5 Column 4
Aux14LED IS JPO25 ; Row 5 Column 5

IncrContLED IS JPO26 ; Row 6 Column 1
x1JogLED IS JPO27 ; Row 6 Column 2
x10JogLED IS JPO28 ; Row 6 Column 3
x100JogLED IS JPO29 ; Row 6 Column 4
MPGLED IS JPO30 ; Row 6 Column 5

Ax4PlusJogLED IS JPO31 ; Row 7 Column 1
UnusedR7C2LED IS JPO32 ; Row 7 Column 2
Ax2PlusJogLED IS JPO33 ; Row 7 Column 3
UnusedR7C4LED IS JPO34 ; Row 7 Column 4
Ax3PlusJogLED IS JPO35 ; Row 7 Column 5

UnusedR8C1LED IS JPO36 ; Row 8 Column 1
Ax1MinusJogLED IS JPO37 ; Row 8 Column 2
FastSlowLED IS JPO38 ; Row 8 Column 3
Ax1PlusJogLED IS JPO39 ; Row 8 Column 4
UnusedR8C5LED IS JPO40 ; Row 8 Column 5

Ax4MinusJogLED IS JPO41 ; Row 9 Column 1
UnusedR9C2LED IS JPO42 ; Row 9 Column 2
Ax2MinusJogLED IS JPO43 ; Row 9 Column 3
UnusedR9C4LED IS JPO44 ; Row 9 Column 4
Ax3MinusJogLED IS JPO45 ; Row 9 Column 5

CycleCancelLED IS JPO46 ; Row 10 Column 1
SingleBlockLED IS JPO47 ; Row 10 Column 2
; FOR JOGBRD REV??????, the LED outputs do not match Key inputs
; The PLC program should activate all three of these when
; it wants to turn on FeedHoldLED so that future hardware changes
; to put them in the same order as their corresponding inputs will work.
ToolCheckLED IS JPO50 ; Row 10 Column 3
FeedHoldLED IS JPO48 ; Row 10 Column 4
CycleStartLED IS JPO49 ; Row 10 Column 5

;---
; ---------SYSTEM VARIABLES--------
;
; For a complete list of System Variables and their functions, please see the
; MPU11 PLC manual.

Page 78

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;---

; MPU11 based systems provide the PLC with the ability to read/write to a
; limited number of "System Variables". While the use of System Variables
; greatly expands PLC functionality, it comes with additional reponsibility on
; the part of the PLC programmer. Functionality that was once implemented as
; default behavior such as jogging, spindle speed, feedrate override, spindle
; gear ranges etc... is now implemented through System Variables in the PLC
; program. It is now the sole responsibilty of the PLC program to provide a
; method to jog an axis, override the spindle speed or feedrates or even map a
; jog panel keypress to a specific function. Pressing a jog key or Aux key
; won't DO anything unless the PLC assigns an action to the keypress. All jog
; panel functions MUST be explicitly implemented in the PLC program.
; ----IMPORTANT----
; Menu navigation in the CNC software requires that the escape key or Cycle
; Cancel key is used to back out of menus and screens. You must use the PLC
; program to map a jog panel key and/or a keyboard key to the Cycle Cancel
; System Variable (SV_PLC_FUNCTION_1 has been declared as "DoCycleCancel")
; in order to use the control. For example:
; The following lines map the escape key and Jog Panel Cycle Cancel key to
; produce a Cycle Cancel event:

; 1. Map escape keypress event to identifier to describe what key was pressed.
; Kb_Escape IS SV_PC_Keyboard_Key_1

; 2. Map MEM bit to identifier that describes what the keypress is used for.
; KbCycleCancel_M IS MEM401

; 3. Logic to "set" KbCycleCancel_M anytime the escape key is pressed.
; if Kb_Escape THEN(KbCycleCancel_M)

; 4. Logic to cancel job if the escape key or cycle cancle key is pressed.
; IF (CycleCancelKey || KbCycleCancel_M) && SV_PROGRAM_RUNNING
; THEN (DoCycleCancel)

; Some of the information made available to the PLC through System Variables:
; 1. Encoder positions: SV_MPU11_ABS_POS_1 - SV_MPU11_ABS_POS_7
; 2. Parameter values: SV_MACHINE_PARAMETER_1 - SV_MACHINE_PARAMETER_999
; 3. Spindle Speed command from PC: SV_PC_DAC_SPINDLE_SPEED
; 4. PC Keyboard Keypress: SV_PC_FUNCTION_1 - SV_PC_FUNCTION_127
; 5. ...

; Some of the functionality controlled by the PLC through System Variables:
; 1. Axis jogging: SV_PLC_FUNCTION_12 - SV_PLC_FUNCTION_23
; 2. "Final" Spindle speed reported to PC: SV_PLC_SPINDLE_SPEED -provides nearly
; unlimited gear ranges
; 3. Feedrate (through override knob): SV_PLC_FeedrateKnob_W
; 4. Custom debounce, invert/force inputs: SV_PLC_DEBOUNCE_1-SV_PLC_DEBOUNCE_64
; 5. ...

;---
; PLC Input manipulation - SV_PLC_DEBOUNCE_1 - SV_PLC_DEBOUNCE_64
; The System Variables in this section are used to modify the characteristics
; of PLC inputs 1-240. Each input can be inverted, forced or assigned a custom
; debounce time.

;-----------------------------Debounce Times------------------------------------
; SV_PLC_DEBOUNCE_61 - SV_PLC_DEBOUNCE_64 are used to define up to seven custom

Page 79

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

; debounce times which can be selected for each input.

; The 32 bit integer System Variables SV_PLC_DEBOUNCE_61 - SV_PLC_DEBOUNCE_64,
; are broken up into 8, 16 bit words, only 7 of which are used. The first word,
; the 16 MSB of SV_PLC_DEBOUNCE_61 is unused. Each 16 bit word can be used to
; store a debounce time of between 0-32767 (the MSB of each word is unused).
; Debounce times are in increments of 62.5 usecs which provides debounce times
; of up to ~2 secs.

; SV_PLC_DEBOUNCE_61
; Unused:Bits 0-15 (Selection 0)
; 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

; Debounce Time Selection #1
; MSB 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

; SV_PLC_DEBOUNCE_62
; Debounce Time Selection #2
; 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

; Debounce Time Selection #3
; MSB 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

;------------------------Configuring Input Behavior---------------------------
; Each System Variable from SV_PLC_DEBOUNCE_1 - SV_PLC_DEBOUNCE_60 is a 32 bit
; integer word broken up into 4 bit words to control the behavior of 4 inputs.
; Inputs 1-4 are configured using SV_PLC_DEBOUNCE_1, inputs 5-8 are handled
; using SV_PLC_DEBOUNCE_2 and so on to SV_PLC_DEBOUNCE_60 which controls inputs
; 237-240

; As mentioned above, each 32 bit word defines the charactersitics for 4 inputs.
; SV_PLC_DEBOUNCE_1 defines the characteristics of INP1, INP2, INP3 & INP4 and
; so on through SV_PLC_DEBOUNCE_60 which handles INP237, INP238, INP239&INP240.
; The behavior of an input is set as follows:

; Five new operators have been introduced to simplify bit operations:
; BitSet, BitRst, BitTst, LShift & Rshift. Below we will use bitset to
; invert an input. This is convenient to use when a device is normally
; open and the logic is written for a normally closed device. Inverting
; the input allows to reuse the existing logic rather than rewrite it.

; bitset and bitrst can not operate directly on SV_PLC_DEBOUNCE_# system
; variables, they can only operate on W32 variables. In order to use bitset and
; bitrst to manipulate the debounce variables you'll have to perform all
; operations on a w32 first:

; Declare a W32:
; Inputs_9_12_W IS W1
; use BITSET or BITRST
; if 1 == 1 THEN bitset Inputs_9_12_W 14 ;invert INP10 (bit14)

; Set Debounce system variable = to W32 variable
; if 1 == 1 THEN SV_PLC_DEBOUNCE_3 = Inputs_9_12_W

;---------------------System Variable = SV_PLC_DEBOUNCE_1---------------------
; Inp4 = bits 31-24 Inp3 = bits 23-16
; MSB 31 30 29 28 27 26 25 24| 23 22 21 20 19 18 17 16

Page 80

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

; Inp2 = bits 15-8 Inp1 = bits 7-0
; 15 14 13 12 11 10 9 8| 7 6 5 4 3 2 1 0LSB

; Each 8 bit word from above
; MSB 7 6 5 4 3 2 1 0 LSB
; Force Invert Spare Spare Spare Debounce Select (7)
; selects 1 of 7
; debounce times
; (zero is invalid)
; Force (bit 7): Set this bit to force the input to a 1* (closed)
; Invert(bit 6): Set this to invert an input
; Spare(bit5-3): Not used
; Debounce(bit 0-2): Selects one of the 7 preset debounce times defined in
; SV_PLC_DEBOUNCE_61 - SV_PLC_DEBOUNCE_64
;
; *If you wish to force an input to 0, set the both invert AND force bits
; for the input.

;---
; PLC Jog Panel input manipulation - The System Variables in this section are
; used to modify the characteristics of the Jog Panel keys. The jog panel keys
; can be configured in the same manner as the PLC inputs and use debounce times
; as selected/set in SV_PLC_DEBOUNCE_61 - SV_PLC_DEBOUNCE_64.
;---

;--
; System variables: Jog Panel Functions
;--
; Jog panel functions
;Invalid IS SV_PLC_FUNCTION_0
DoCycleCancel IS SV_PLC_FUNCTION_1
DoCycleStart IS SV_PLC_FUNCTION_2
DoToolCheck IS SV_PLC_FUNCTION_3
SelectSingleBlock IS SV_PLC_FUNCTION_4
SelectX1JogInc IS SV_PLC_FUNCTION_5
SelectX10JogInc IS SV_PLC_FUNCTION_6
SelectX100JogInc IS SV_PLC_FUNCTION_7
SelectUserJogInc IS SV_PLC_FUNCTION_8
SelectIncContJog IS SV_PLC_FUNCTION_9
SelectFastSlowJog IS SV_PLC_FUNCTION_10
SelectMpgMode IS SV_PLC_FUNCTION_11
DoAx1PlusJog IS SV_PLC_FUNCTION_12
DoAx1MinusJog IS SV_PLC_FUNCTION_13
DoAx2PlusJog IS SV_PLC_FUNCTION_14
DoAx2MinusJog IS SV_PLC_FUNCTION_15
DoAx3PlusJog IS SV_PLC_FUNCTION_16
DoAx3MinusJog IS SV_PLC_FUNCTION_17
DoAx4PlusJog IS SV_PLC_FUNCTION_18
DoAx4MinusJog IS SV_PLC_FUNCTION_19
DoAx5PlusJog IS SV_PLC_FUNCTION_20
DoAx5MinusJog IS SV_PLC_FUNCTION_21
DoAx6PlusJog IS SV_PLC_FUNCTION_22
DoAx6MinusJog IS SV_PLC_FUNCTION_23
DoAux1Key IS SV_PLC_FUNCTION_24
DoAux2Key IS SV_PLC_FUNCTION_25
DoAux3Key IS SV_PLC_FUNCTION_26
DoAux4Key IS SV_PLC_FUNCTION_27

Page 81

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

DoAux5Key IS SV_PLC_FUNCTION_28
DoAux6Key IS SV_PLC_FUNCTION_29
DoAux7Key IS SV_PLC_FUNCTION_30
DoAux8Key IS SV_PLC_FUNCTION_31
DoAux9Key IS SV_PLC_FUNCTION_32
DoAux10Key IS SV_PLC_FUNCTION_33
SelectRapidOverride IS SV_PLC_FUNCTION_34
SelectManAutoSpindle IS SV_PLC_FUNCTION_35
DoSpindleStart IS SV_PLC_FUNCTION_37
DoSpindleStop IS SV_PLC_FUNCTION_38
DoAux11Key IS SV_PLC_FUNCTION_39
DoAux12Key IS SV_PLC_FUNCTION_40
;SelectCoolantMan IS SV_PLC_FUNCTION_41 ;deprecated
;SelectCoolantAuto IS SV_PLC_FUNCTION_42 ;deprecated
SelectCoolantFlood IS SV_PLC_FUNCTION_43
SelectCoolantMist IS SV_PLC_FUNCTION_44
DoFeedHold IS SV_PLC_FUNCTION_45
SelectSpindleCCW IS SV_PLC_FUNCTION_98
SelectSpindleCW IS SV_PLC_FUNCTION_99
SelectCoolAutoMan is SV_PLC_FUNCTION_104
DoIncreaseSpindleOr IS SV_PLC_FUNCTION_106
DoDecreaseSpindleOr IS SV_PLC_FUNCTION_107
SelectSpinOr100 IS SV_PLC_FUNCTION_108

;--
; System variables: Keyboard jogging functions
;--
;---
; Keyboard Jogging Keys - The System Variables in this section inform the PLC
; that a PC keyboard keypress has occured. Keep in mind that some key presses
; only come down while the keyboard jogging screen is enabled (alt-j) and that
; NONE of these keys not perform ANY default actions unless programmed to do so.
; The assignments provided below are for reference only. For an example of
; mapping a keyboard key press to an MPU11 action, see the logic assigned to
; KbCycleStart_M or KbCycleCancel_M.
;
;Note:
; Keypresses are sent down as individual keys. It is the responsibility of
; the PLC programmer to insure that a keypress is only acted on at the
; appropriate times.
; The "SV_PC_VIRTUAL_JOGPANEL_ACTIVE" system variable can be used to prevent
; a keypress form being acted on unless the keyboard jog screen is being
; displayed. NOTE The above,29 character sys variable is mapped to
; KbJpActive_M (MEM80) to make it a "little" shorter......
;---
Kb_a IS SV_PC_KEYBOARD_KEY_60
Kb_b IS SV_PC_KEYBOARD_KEY_79
Kb_c IS SV_PC_KEYBOARD_KEY_77
Kb_d IS SV_PC_KEYBOARD_KEY_62
Kb_e IS SV_PC_KEYBOARD_KEY_41
Kb_f IS SV_PC_KEYBOARD_KEY_63
Kb_g IS SV_PC_KEYBOARD_KEY_64
Kb_h IS SV_PC_KEYBOARD_KEY_65
Kb_i IS SV_PC_KEYBOARD_KEY_46
Kb_j IS SV_PC_KEYBOARD_KEY_66
Kb_k IS SV_PC_KEYBOARD_KEY_67
Kb_l IS SV_PC_KEYBOARD_KEY_68
Kb_m IS SV_PC_KEYBOARD_KEY_81

Page 82

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Kb_n IS SV_PC_KEYBOARD_KEY_80
Kb_o IS SV_PC_KEYBOARD_KEY_47
Kb_p IS SV_PC_KEYBOARD_KEY_48
Kb_q IS SV_PC_KEYBOARD_KEY_39
Kb_r IS SV_PC_KEYBOARD_KEY_42
Kb_s IS SV_PC_KEYBOARD_KEY_61
Kb_t IS SV_PC_KEYBOARD_KEY_43
Kb_u IS SV_PC_KEYBOARD_KEY_45
Kb_v IS SV_PC_KEYBOARD_KEY_78
Kb_w IS SV_PC_KEYBOARD_KEY_40
Kb_x IS SV_PC_KEYBOARD_KEY_76
Kb_y IS SV_PC_KEYBOARD_KEY_44
Kb_z IS SV_PC_KEYBOARD_KEY_75
Kb_spacebar IS SV_PC_KEYBOARD_KEY_95
Kb_L_Shift IS SV_PC_KEYBOARD_KEY_74
Kb_R_Shift IS SV_PC_KEYBOARD_KEY_85
Kb_L_Alt IS SV_PC_KEYBOARD_KEY_94
Kb_R_Alt IS SV_PC_KEYBOARD_KEY_96
Kb_L_Ctrl IS SV_PC_KEYBOARD_KEY_92
Kb_R_Ctrl IS SV_PC_KEYBOARD_KEY_99
Kb_Ins IS SV_PC_KEYBOARD_KEY_31
Kb_Home IS SV_PC_KEYBOARD_KEY_32
Kb_End IS SV_PC_KEYBOARD_KEY_53
Kb_PgDown IS SV_PC_KEYBOARD_KEY_54
Kb_PgUp IS SV_PC_KEYBOARD_KEY_33
Kb_Del IS SV_PC_KEYBOARD_KEY_52
Kb_Back IS SV_PC_KEYBOARD_KEY_30
Kb_Tab IS SV_PC_KEYBOARD_KEY_38
Kb_Up IS SV_PC_KEYBOARD_KEY_87
Kb_Down IS SV_PC_KEYBOARD_KEY_101
Kb_Left IS SV_PC_KEYBOARD_KEY_100
Kb_Right IS SV_PC_KEYBOARD_KEY_102
Kb_Escape IS SV_PC_KEYBOARD_KEY_1 ;Performs Cycle Cancel
Kb_F1 IS SV_PC_KEYBOARD_KEY_2
Kb_F2 IS SV_PC_KEYBOARD_KEY_3
Kb_F3 IS SV_PC_KEYBOARD_KEY_4
Kb_F4 IS SV_PC_KEYBOARD_KEY_5
Kb_F5 IS SV_PC_KEYBOARD_KEY_6
Kb_F6 IS SV_PC_KEYBOARD_KEY_7
Kb_F7 IS SV_PC_KEYBOARD_KEY_8
Kb_F8 IS SV_PC_KEYBOARD_KEY_9
Kb_F9 IS SV_PC_KEYBOARD_KEY_10
Kb_F10 IS SV_PC_KEYBOARD_KEY_11
Kb_F11 IS SV_PC_KEYBOARD_KEY_12
Kb_F12 IS SV_PC_KEYBOARD_KEY_13
Kb_Prt_Scrn IS SV_PC_KEYBOARD_KEY_14
Kb_Scrl_Lck IS SV_PC_KEYBOARD_KEY_15
Kb_Break IS SV_PC_KEYBOARD_KEY_16
Kb_Num_Lock IS SV_PC_KEYBOARD_KEY_34
Kb_1 IS SV_PC_KEYBOARD_KEY_18
Kb_2 IS SV_PC_KEYBOARD_KEY_19
Kb_3 IS SV_PC_KEYBOARD_KEY_20
Kb_4 IS SV_PC_KEYBOARD_KEY_21
Kb_5 IS SV_PC_KEYBOARD_KEY_22
Kb_6 IS SV_PC_KEYBOARD_KEY_23
Kb_7 IS SV_PC_KEYBOARD_KEY_24
Kb_8 IS SV_PC_KEYBOARD_KEY_25
Kb_9 IS SV_PC_KEYBOARD_KEY_26

Page 83

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Kb_0 IS SV_PC_KEYBOARD_KEY_27
Kb_10_Key_Div IS SV_PC_KEYBOARD_KEY_35
Kb_10_Key_Mlt IS SV_PC_KEYBOARD_KEY_36
Kb_10_Key_Sub IS SV_PC_KEYBOARD_KEY_37
Kb_10_Key_0 IS SV_PC_KEYBOARD_KEY_103
Kb_10_Key_1 IS SV_PC_KEYBOARD_KEY_88
Kb_10_Key_2 IS SV_PC_KEYBOARD_KEY_89
Kb_10_Key_3 IS SV_PC_KEYBOARD_KEY_90
Kb_10_Key_4 IS SV_PC_KEYBOARD_KEY_71
Kb_10_Key_5 IS SV_PC_KEYBOARD_KEY_72
Kb_10_Key_6 IS SV_PC_KEYBOARD_KEY_73
Kb_10_Key_7 IS SV_PC_KEYBOARD_KEY_55
Kb_10_Key_8 IS SV_PC_KEYBOARD_KEY_56
Kb_10_Key_9 IS SV_PC_KEYBOARD_KEY_57
Kb_10_Key_Dec_Pt IS SV_PC_KEYBOARD_KEY_104
Kb_10_Key_Plus IS SV_PC_KEYBOARD_KEY_58
Kb_Num_Enter IS SV_PC_KEYBOARD_KEY_91
Kb_L_Sq_Bracket IS SV_PC_KEYBOARD_KEY_49
Kb_R_Sq_Bracket IS SV_PC_KEYBOARD_KEY_50
Kb_Hyphen IS SV_PC_KEYBOARD_KEY_28
Kb_Equals IS SV_PC_KEYBOARD_KEY_29
Kb_Comma IS SV_PC_KEYBOARD_KEY_82
Kb_Period IS SV_PC_KEYBOARD_KEY_83
Kb_Slash IS SV_PC_KEYBOARD_KEY_84
Kb_Backslash IS SV_PC_KEYBOARD_KEY_86

;--
; M functions - The System Variables in this section inform the
; PLC that an M function has been requested.
;--
M3 IS SV_M94_M95_1 ;(Spindle CW)
M4 IS SV_M94_M95_2 ;(Spindle CCW)
M8 IS SV_M94_M95_3 ;(Flood On)
M10 IS SV_M94_M95_4 ; Clamp
M7 IS SV_M94_M95_5 ;(Mist)
; IS SV_M94_M95_6 ;
; IS SV_M94_M95_7 ;
; IS SV_M94_M95_8 ;
; IS SV_M94_M95_9 ;
; IS SV_M94_M95_10;
; IS SV_M94_M95_11;
; IS SV_M94_M95_12;
; IS SV_M94_M95_13;
; IS SV_M94_M95_14;
; IS SV_M94_M95_15;
; IS SV_M94_M95_16;

;--
; Word Definitions (int32)
;--
ErrorCode_W IS W1
TwelveBitSpeed_W IS W2
LubeAccumTime_W IS W3
KbOverride_W IS W4
FeedrateKnob_W IS W5
CycloneStatus_W IS W6
FinalFeedOverride_W IS W7
PLC_Fault_W IS W8

Page 84

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

PLCFaultAddr_W IS W9
Last_FeedrateKnob_W IS W10
AsyncMsg_W IS W11
P148Value_W IS W12
Lube_W IS W21
LubeM_W IS W22
LubeS_W IS W23
Inputs_9_12_W IS W28
P170Value_W IS W30
P178Value_W IS W31

;--
; Word Definitions cont. (f32)
;--
SpinRangeAdjust IS FW1
RPMPerBit_FW IS FW2
CfgMinSpeed_FW IS FW3
CfgMaxSpeed_FW IS FW4
TwelveBitSpeed_FW IS FW5
SpinSpeedCommand_FW IS FW6

;------------------------------------
; One Shot Definitions
;------------------------------------
IncrContPD IS PD1
SlowFastPD IS PD2
MpgPD IS PD3
SingleBlockPD IS PD4
FeedHoldPD IS PD5
SpinAutoManPD IS PD6
SpindlePlusPD IS PD7
SpinOverMinusPD IS PD8
SpinOver100PD IS PD9
SpinStartPD IS PD10
SpinStopPD IS PD11
SpinCWPD IS PD12
SpinCCWPD IS PD13
F9PD IS PD14
x1JogPD IS PD15
x10JogPD IS PD16
x100JogPD IS PD17
Aux11KeyPD IS PD18
RapidOverPD IS PD19
CoolantAutoManualPD IS PD21
CoolantFloodPD IS PD22
CoolantMistPD IS PD23
ToolCheckPD IS PD24
JogProbeFaultPD IS PD25
RigidTapPD IS PD26
PCSpindleStartStopPD IS PD30
PCSpindleManualPD IS PD31
PCSpindleCWPD IS PD32
PCSpindleCCWPD IS PD33
StopRunningPD IS PD35
SoftwareReadyPD IS PD36
Aux1PD IS PD41

Page 85

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Aux2PD IS PD42
Aux3PD IS PD43
Aux4PD IS PD44
Aux5PD IS PD45
Aux6PD IS PD46
Aux7PD IS PD47
Aux8PD IS PD48
Aux9PD IS PD49

;--
; Timer Definitions
;--
; 1000 = 1 second for all timers.
;
MsgClear_T IS T1
SleepTimer IS T2
CycloneStatus_T IS T3
Initialize_T IS T4
LubeM_T IS T13
LubeS_T IS T14

;--
; Stage Definitions
;--
WatchDogStage IS STG1
InitialStage IS STG2
JogPanelStage IS STG3
MainStage IS STG4
AxesEnableStage IS STG5
SpindleStage IS STG6
MPGStage IS STG7
CheckCycloneStatusStage IS STG8
LoadParametersStage IS STG9
KeyboardEventsStage IS STG10
LubeUsePumpTimersStage IS STG13
LubeUsePLCTimersStage IS STG14

SetErrorStage IS STG50
BadErrorStage IS STG51

;###
; Program Start
;###

;===
 WatchDogStage
;===

; Handle PLC executor faults. The only way to reset a PLC executor fault
; is to reboot the MPU11.
IF SV_PLC_FAULT_STATUS != 0
 THEN PLC_Fault_W = SV_PLC_FAULT_STATUS,
 PLCFaultAddr_W = SV_PLC_FAULT_ADDRESS,
 ErrorCode_W = PLC_EXECUTOR_FLT_MSG, MSG ErrorCode_W,
 SET PLCExecutorFault_M, RST SetErrorStage, SET SV_STOP

; Handle software exit.
IF !SV_PC_SOFTWARE_READY && (SV_PLC_FAULT_STATUS == 0)

Page 86

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 THEN SET SoftwareNotReady_M,
 SET SV_STOP,
 ErrorCode_W = SOFTWARE_EXIT_MSG

if SV_PC_SOFTWARE_READY && (SV_PLC_FAULT_STATUS == 0) THEN (SoftwareReadyPD)
IF SoftwareReadyPD && !SoftwareNotReady_M || !True THEN SET InitialStage

IF SoftwareReadyPD && SoftwareNotReady_M THEN RST SoftwareNotReady_M

;===
 InitialStage
;===
IF 1==1 THEN SET true,
 SET OnAtPowerUp_M,
 SET AxesEnableStage,
 SET MainStage,
 SET JogPanelStage,
 SET LoadParametersStage,
 SET MPGStage,
 SET PLCBus_Oe_M,
 RST DriveComFltIn_M,
 RST DriveComFltOut_M,
 RST PLCFault_M,
 CycloneStatus_T = 300,
 ErrorCode_W = MSG_CLEARED_MSG,
 RST BadErrorStage,
 SET SetErrorStage,
 Initialize_T = 1000, SET Initialize_T,
 RST InitialStage

;===
 LoadParametersStage
;===

; There are two methods of control for the lube pump and they are set by CNC11
; Machine Parameter 179, where the value is between 0 - 65535 and is formatted
; as MMMSS where MMM is a time in minutes and SS is a time in seconds.
;
; METHOD 1 (SS == 0) For lube pumps with internal timers.
; METHOD 2 (SS != 0) For lube pumps with no timers (controlled soley by PLC).
;
; Load lube pump times from P179 and convert to milliseconds.
IF true THEN Lube_W = SV_MACHINE_PARAMETER_179,
 LubeM_W = (Lube_W / 100) * 60000,
 LubeS_W = (Lube_W % 100) * 1000

; Set the appropriate stage according to method of control
IF LubeS_W == 0 THEN SET LubeUsePumpTimersStage, RST LubeUsePLCTimersStage
IF LubeS_W != 0 THEN SET LubeUsePLCTimersStage, RST LubeUsePumpTimersStage

IF True THEN P148Value_W = SV_MACHINE_PARAMETER_148, ; Misc Jogging Options
 P170Value_W = SV_MACHINE_PARAMETER_170, ; Enable Keyboard Jogging
 P178Value_W = SV_MACHINE_PARAMETER_178 ; PLC IO NO / NC Settings

IF True THEN BITTST P148Value_W 1 DisableKbInput_M,
 BITTST P170Value_W 0 AllowKbInput_M
IF DisableKbInput_M THEN RST AllowKbInput_M

Page 87

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

If true THEN BitTst P170Value_W 1 JogOverOnly_M
If true THEN BitTst P170Value_W 2 KbOverOnly_M
if JogOverOnly_M && KbOverOnly_M THEN rst KbOverOnly_M

If true THEN BitTst P178Value_W 0 InvLubeOk_M
If true THEN BitTst P178Value_W 1 InvSpinInverterOk_M

;===
 LubeUsePumpTimersStage
;===

; METHOD 1 (SS == 0) For lube pumps with internal timers.
;
; When using this method, P179 should be set such that MMM is a
; value that is greater than the cycle time set on the internal timers and
; SS should be set to zero. How much greater MMM needs to be depends on the
; accuracy of the lube pump timers, but it is better to be on the long side
; to ensure proper operation.
;
; Example 1. The internal lube cycle interval is set to 60 minutes.
; Set P179 = 7500. In this example, as long as the accuracy
; of the lube timer interval causes the lube to turn on
; within 75 minutes, it will work. Note that the amount of time
; that lube is output is usually set with another timer control
; on the lube pump and it does not factor into the setting of P179.
;
; It should be noted that lube pumps with internal timers may differ on how
; they operate.
;
; (a) For pumps that lube immediately when power is applied and then start timing
; until the next cycle, it is possible to run out of lube quickly on short job
; runs if, after the program has been run, lube power is removed.
;
; (b) For pumps that do not lube until it has been turned on for the interval time,
; it is possible that lube never gets applied if, after the short program has been run,
; lube power is removed.
;
; A short program or job run is defined as a job that finishes before
; the interval setting (60 minutes in the above example).
;
; For the above mentioned reasons, we want the power to be applied for at least
; the amount of time set by the inteval timer, noting that if the user decides
; to engage the E-stop to remove power after short jobs, then they risk the
; above mentioned problems accoding to the type of pump.
;
; On the start of SV_PROGRAM_RUNNING, the lube pump turns on.
; The lube pump is turned off when a program has NOT been
; running continuously for MMM minutes or E-stop is engaged.
; The reason the lube pump is turned off after a program has NOT been
; running for MMM minutes is to prevent lubing when the user leaves for the
; weekend, leaving the machine on and E-stop disengaged.

IF (SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN SET Lube, RST LubeM_T
IF !(SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN LubeM_T = LubeM_W, SET LubeM_T
IF LubeM_T || !EStopOk THEN RST Lube

;===
 LubeUsePLCTimersStage

Page 88

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;===
;
; METHOD 2 (SS != 0) For lube pumps that do not have internal timers.
;
; When using this method P179 should be set so the lube turns on
; every MMM minutes for SS seconds.
;
; Example 1.
; To set the lube pump power to come on for 5 seconds
; every 10 minutes, set P179 = 1005.
; MMMSS
; Example 2.
; To set the lube pump power to come on for 30 seconds
; every 2 hours, set P179 = 12030
; MMMSS
;
; This method will accumulate time while a program is running until
; it reaches MMM minutes, at which time it will apply power
; for SS seconds (unless E-stop is engaged) and then start over. It is
; possible with frequent use of E-stop that a lube cycle is cut short.
;

IF (SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN LubeM_T = LubeM_W, SET LubeM_T
IF !(SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN (StopRunningPD)
IF StopRunningPD THEN LubeAccumTime_W = LubeAccumTime_W + LubeM_T, RST LubeM_T
IF LubeM_T || (LubeAccumTime_W + LubeM_T > LubeM_W)
 THEN SET Lube, LubeS_T = LubeS_W, SET LubeS_T, RST LubeM_T, LubeAccumTime_W = 0
IF LubeS_T || !EStopOk THEN RST Lube, RST LubeS_T

;===
 KeyboardEventsStage
;===
; This stage handles functions that are required for menu navigation
; by CNC11, require multiple keypresses and/or need to be interlocked
; with SV_PC_VIRTUAL_JOGPANEL_ACTIVE and/or AllowKbInput_M. Regarding
; "AllowKbInput_M": This PLC program reads a bit from a system parameter,
; in this case bit 0 of SV_MACHINE_PARAMETER_170, and sets "AllowKbInput_M"
; if the bit is a "0". If the operator wishes to allow keyboard input
; to trigger PLC events, they must set parameter 170 to a "1"
; (or any odd number for that matter). It should be mentioned that
; the programmer will not want to interlock all keyboard keys with
; SV_PC_VIRTUAL_JOGPANEL_ACTIVE and/or AllowKbInput_M. For example:
; The "escape" key must be echoed by the PLC to CNC11 to aid in menu
; navigation. NOTE: For backward comaptibility with CNC10, setting bit 1
; of SV_MACHINE_PARAMETER_148 OR clearing bit 0 of SV_MACHINE_PARAMETER_170
; will disable keyboard jogging.

;-------------------------Not interlocked------------------------
; The code for cycle cancel has been moved to the main stage.
; It is commented out below but remains for reference
;Cycle Cancel
;if Kb_Escape THEN (KbCycleCancel_M)

;Rapidoverride: Ctrl-r
if Kb_r && (Kb_L_Ctrl || Kb_R_Ctrl) THEN (KbTogRapidOver_M)

;----------------Interlocked with AllowKbInput_M-------------------
;KbCycle Start: alt-s

Page 89

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

if Kb_s && (Kb_R_Alt || Kb_L_Alt) && AllowKbInput_M then (KbCycleStart_M)

;KbToolCheck_M: Ctrl-t
if Kb_t && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbToolCheck_M)

;KbTogSingleBlock_M: ctrl-b
if Kb_b && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbTogSingleBlock_M)

;KbTogSpinAutoMan_M: ctrl-a
if Kb_a && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbTogSpinAutoMan_M)

;KbSpinCW_M: ctrl-c
IF Kb_c && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN SET KbSpinCW_M,
 RST KbSpinCCW_M

;KbSpinCCW_M: ctrl-w
IF Kb_w && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN SET KbSpinCCW_M,
 RST KbSpinCW_M

;KbSpinStart_M: ctrl-s
if Kb_s && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbSpinStart_M)

;KbSpindle stop: Ctrl-q
if Kb_q && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbSpinStop_M)

;KbIncSpinOver_M: ctrl (">")
if Kb_Period && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M
 then (KbIncSpinOver_M)

;KbDecSpinOver_M: ctrl ("<")
if Kb_Comma && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M
 then (KbDecSpinOver_M)

;KbSpinOver100_M: ctrl + /
IF Kb_Slash && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M
 THEN (KbSpinOver100_M)

;KbTogCoolAutoMan_M: Ctrl-m
if Kb_m && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbTogCoolAutoMan_M)

;KbFloodOnOff_M: Ctrl-n
if Kb_n && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbFloodOnOff_M)

;KbMistOnOff_M: Ctrl-k
if Kb_k && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbMistOnOff_M)

;KbTogIncContJog_M: "ctrl" + "i"
if Kb_i && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbTogIncContJog_M)

;KbTogFastSlowJog_M: "ctrl" + "f"
IF Kb_f && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M
 THEN (KbTogFastSlowJog_M)

;KbAux1Key_M: "ctrl" + "F1"
if Kb_F1 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M then (KbAux1Key_M)

;KbAux2Key_M: "ctrl" + "F2"
if Kb_F2 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux2Key_M)

Page 90

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;KbAux3Key_M: "ctrl" + "F3"
if Kb_F3 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux3Key_M)

;KbAux4Key_M: "ctrl" + "F4"
if Kb_F4 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux4Key_M)

;KbAux5Key_M: "ctrl" + "F5"
if Kb_F5 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux5Key_M)

;KbAux6Key_M: "ctrl" + "F6"
if Kb_F6 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux6Key_M)

;KbAux7Key_M: "ctrl" + "F7"
if Kb_F7 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux7Key_M)

;KbAux8Key_M: "ctrl" + "F8"
if Kb_F8 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux8Key_M)

;KbAux9Key_M: "ctrl" + "F9"
if Kb_F9 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux9Key_M)

;KbAux10Key_M: "ctrl" + "F10"
if Kb_F10 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux10Key_M)

;KbAux11Key_M: "ctrl" + "F11"
if Kb_F11 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux11Key_M)

;KbAux12Key_M: "ctrl" + "F12"
if Kb_F12 && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M THEN (KbAux12Key_M)

;KbIncFeedOver_M: "ctrl" + "keyboard +" (actually "=")
IF Kb_Equals && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M
 THEN (KbIncFeedOver_M)

;KbDecFeedOver_M: "ctrl" + "keyboard -"
IF Kb_Hyphen && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M
 THEN (KbDecFeedOver_M)

;KbFeedOver100_M: "ctrl" + "keyboard \"
IF Kb_Backslash && (Kb_L_Ctrl || Kb_R_Ctrl) && AllowKbInput_M
 THEN (KbFeedOver100_M)

;--------Interlocked with AllowKbInput_M && KbJpActive_M-----------

;KbIncreaseJogInc_M: "insert"
if Kb_Ins && AllowKbInput_M && KbJpActive_M
 then (KbIncreaseJogInc_M)
if KbIncreaseJogInc_M && x1JogLED && !X1_M && !X10_M && !X100_M
 then set X10_M
if KbIncreaseJogInc_M && x10JogLED && !X1_M && !X10_M && !X100_M
 then set X100_M

;KbDecreaseJogInc_M: "delete"
if Kb_Del && AllowKbInput_M && KbJpActive_M
 then (KbDecreaseJogInc_M)
if KbDecreaseJogInc_M && x10JogLED && !X1_M && !X10_M && !X100_M

Page 91

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 then set X1_M
if KbDecreaseJogInc_M && x100JogLED && !X1_M && !X10_M && !X100_M
 then set X10_M

;KbJogAx1Plus_M: Right arrow
if Kb_Left && AllowKbInput_M && KbJpActive_M THEN (KbJogAx1Plus_M)

;KbJogAx1Minus_M: Right arrow
if Kb_Right && AllowKbInput_M && KbJpActive_M THEN (KbJogAx1Minus_M)

;KbJogAx2Plus_M: Up arrow
if Kb_Up && AllowKbInput_M && KbJpActive_M THEN (KbJogAx2Plus_M)

;KbJogAx1Minus_M: Down arrow
if Kb_Down && AllowKbInput_M && KbJpActive_M THEN (KbJogAx2Minus_M)

;KbJogAx3Plus_M: Page up
if Kb_PgUp && AllowKbInput_M && KbJpActive_M THEN (KbJogAx3Plus_M)

;KbJogAx3Minus_M: Page Down
if Kb_PgDown && AllowKbInput_M && KbJpActive_M THEN (KbJogAx3Minus_M)

;KbAx4PlusJog: "home"
if Kb_Home && AllowKbInput_M && KbJpActive_M
 then (KbJogAx4Plus_M)

;KbAx4MinusJog: "end"
if Kb_End && AllowKbInput_M && KbJpActive_M
 then (KbJogAx4Minus_M)

IF True THEN RST KeyboardEventsStage

;===
 MPGStage
;===
; MPG Functions
; Turn on/off Jog Panel MPG LED & on the MPG
IF MPGKey then (MpgPD)
IF MpgPD && MPGLED then set MPGManOffFlag_M
IF !SV_MPG_1_ENABLED || (MpgPD && !MPGLED) then RST MPGManOffFlag_M

IF (MpgPD && !MPGLED) || (SV_MPG_1_ENABLED && !MPGManOffFlag_M) &&
 !SV_PROGRAM_RUNNING THEN SET MPG_LED_OUT, SET MPGLED

IF (!SV_MPG_1_ENABLED || (MpgPD && MPGLED))
 || SV_PROGRAM_RUNNING THEN RST MPG_LED_OUT, RST MPGLED

;x1, x10, x100 functions
;--X1
IF x1JogKey THEN (x1JogPD)
IF x1JogPD || OnAtPowerUp_M || X1_M || (MPG_Inc_X_1 && MPGLED)
 THEN SET x1JogLED, RST x10JogLED, RST x100JogLED

;--X10
IF x10JogKey THEN (x10JogPD)
IF x10JogPD || X10_M || (MPG_Inc_X_10 && MPGLED)
 THEN RST x1JogLED, SET x10JogLED, RST x100JogLED

Page 92

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;--X100
IF x100JogKey THEN (x100JogPD)
IF x100JogPD || X100_M || (MPG_Inc_X_100 && MPGLED)
 THEN RST x1JogLED, RST x10JogLED, SET x100JogLED

if !KbIncreaseJogInc_M && !KbDecreaseJogInc_M then rst X1_M, rst X10_M,
 rst X100_M

;--MPG 1 Enable
IF MPG_AXIS_1 || MPG_AXIS_2 || MPG_AXIS_3 || MPG_AXIS_4 ||
 MPG_AXIS_5 || MPG_AXIS_6 || MPG_AXIS_7 || MPG_AXIS_8
 THEN (SV_MPG_1_ENABLED)

; Select axis to move
IF MPG_AXIS_1 THEN SV_MPG_1_AXIS_SELECT = 1
IF MPG_AXIS_2 THEN SV_MPG_1_AXIS_SELECT = 2
IF MPG_AXIS_3 THEN SV_MPG_1_AXIS_SELECT = 3
IF MPG_AXIS_4 THEN SV_MPG_1_AXIS_SELECT = 4
IF MPG_AXIS_5 THEN SV_MPG_1_AXIS_SELECT = 5

; Select MPG 1 Multiplier
IF (MPG_Inc_X_100) THEN SV_MPG_1_MULTIPLIER = 100
IF (MPG_Inc_X_10) THEN SV_MPG_1_MULTIPLIER = 10
IF (MPG_Inc_X_1) THEN SV_MPG_1_MULTIPLIER = 1

; Disable "Windup" mode IF x100 selected
IF (!MPG_Inc_X_100) THEN (SV_MPG_1_WINDUP_MODE)

;===
 JogPanelStage
;===
;--Select Incremental or Continuous Jog Mode
IF IncrContKey || KbTogIncContJog_M THEN (IncrContPD)
IF (IncrContPD && !IncrContLED) || OnAtPowerUp_M THEN SET IncrContLED
IF (IncrContPD && IncrContLED) THEN RST IncrContLED

;--Select Fast or Slow Jog Mode
IF FastSlowKey || KbTogFastSlowJog_M THEN (SlowFastPD)
IF (SlowFastPD && !FastSlowLED) || OnAtPowerUp_M
 THEN SET FastSlowLED
IF (SlowFastPD && FastSlowLED) THEN RST FastSlowLED

;--Single Block Mode

IF SingleBlockKey || KbTogSingleBlock_M THEN (SingleBlockPD)
IF SingleBlockPD && !SingleBlockLED && !SV_PROGRAM_RUNNING
 THEN SET SingleBlockLED
IF SingleBlockPD && SingleBlockLED THEN RST SingleBlockLED
IF SingleBlockLED THEN (SelectSingleBlock)

;--Toolcheck

IF (ToolCheckKey || KbToolCheck_M) && EstopOk THEN (ToolCheckPD)
IF ToolCheckPD THEN (DoToolCheck)

;--Feed Hold Mode

Page 93

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF (FeedHoldKey || KbFeedHold_M) && SV_PROGRAM_RUNNING THEN (FeedHoldPD)
IF FeedHoldPD && !FeedHoldLED THEN SET FeedHoldLED
IF FeedHoldPD && FeedHoldLED && !SV_PROGRAM_RUNNING && !SV_MDI_MODE
 THEN RST FeedHoldLED
IF FeedHoldLED && (DoCycleStart || DoCycleCancel || ToolCheckPD)
 THEN RST FeedHoldLED
; (FeedHoldLED will be used later to signal MPU11 to do Feed Hold)

;--Feedrate Override Section
;---
; Feedrate override works as follows:
;
; 1. The PLC reads the 8 bit value of the FeedrateKnob_W directly (0-255)
; 2. The PLC scales this value to a 0-200 value (0-200%) by dividing by
; the knob value by 127.5 and then multiplying the result by 100
; 3. If keyboard joggin is not disabled (it is enabled by default), the PLC
; determines whether the operator is using the keyboard override or
; the FeedrateKnob_W to override the feedrate by watching which was changed
; most recently. The most recently changed value is saved as
; "FinalFeedOverride_W"
; 4. Parameter 39 in (From the "params" screen in CNC11 software) stores
; a value which allows which the PLC program can use to limit the amount
; of override applied to the programmed feedrate. This value is specified
; as a percentage.
; 5. The PLC limits the override percentage by reading parameter 39 and, if
; the feedrate override percentage as read from the knob is greater than
; parameter 39, it sets the FinalFeedOverride_W value to the value of
; parameter 39.
; 6. Once the override percentage has been determined and limited (if needed)
; The PLC send this value up to the CNC11 software by setting
; SV_PLC_FeedrateKnob_W = FinalFeedOverride_W
; 7. CNC11 reads SV_PLC_FEEDRATE_KNOB, factors in it's on own override based
; on parameter 78 (see operators manual for more info on parm 78) and then
; returns an override value to the PLC in the system variable
; SV_PC_FEEDRATE_PERCENTAGE
; 8. The PLC reads SV_PC_FEEDRATE_PERCENTAGE and (typically) echoes the system
; variable to SV_PLC_FEEDRATE_OVERRIDE which the MPU11 uses as the final
; determination of the feedrate override percentage.
;---
; 1. The PLC reads the 8 bit value of the FeedrateKnob_W directly (0-255)
; NOTE: BTW = Bit To Word
; BTW reads the specified number of bits (if none is specified it defaults to 8)
; starting from a bit location and writes them to a word with the starting bit
; location being written to the LSB of the word used. Below, BTW reads the bit
; values from JpFeedOrKnobBit0 to JpFeedOrKnobBit7 and writes them into to the
; word "FeedrateKnob_W" which sets FeedrateKnob_W to a value of 0-255
;---
IF true THEN FeedrateKnob_W = 0
if true THEN BTW FeedrateKnob_W JpFeedOrKnobBit0 8

;---
; 2. Scale this value to a 0-200 value (0-200%)
;---
IF true THEN FeedrateKnob_W = (FeedrateKnob_W/127.5)*100

;---
; 3. Determine whether to use FeedrateKnob_W or KbOverride_W
;---

Page 94

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

; This section determines when to use the feedrate override value sent down
; by the jogpanel (FeedrateKnob_W) or the feedrate override as determined
; by the PLC monitoring the keyboard override keys (KbOverride_W).

;---
; At powerup, default feedrate override is jog panel (FeedrateKnob_W)
; To use both keyboard or jogpanel overrides set p170 to 0 (default)
; To use jogpanel override only set p170 to 2
; To use keyboard only set p170 to 4
;---
IF OnAtPowerUp_M && KbOverOnly_M || KbFeedOver100_M THEN KbOverride_W = 100
IF OnAtPowerUp_M && !KbOverOnly_M THEN set UsingFeedrateKnob_M,
 KbOverride_W = FeedrateKnob_W,
 Last_FeedrateKnob_W = FeedrateKnob_W

;----------------Calculate keyboard feedrate override-------------------------
; SleepTimer is used to limit the KbOverride_W update rate to 20% per sec
;---
if AllowKbInput_M && KbIncFeedOver_M && !WaitingForSleepTimer_M
 THEN KbOverride_W = KbOverride_W + 1,
 RST UsingFeedrateKnob_M,
 SET WaitingForSleepTimer_M,
 SleepTimer = 50, SET SleepTimer

if AllowKbInput_M && KbDecFeedOver_M && !WaitingForSleepTimer_M
 THEN KbOverride_W = KbOverride_W - 1, rst UsingFeedrateKnob_M,
 set WaitingForSleepTimer_M, SleepTimer = 50, set SleepTimer

if SleepTimer THEN rst WaitingForSleepTimer_M, rst SleepTimer

;------------Switch to FeedrateKnob_W if it changes more than 3%--------------
; Once it has changed by more than 3%, it will update as normal (1% increments)
; until it sees another KbOverride_W command at which point it will take
; another 3% change to re-activate the FeedrateKnob_W

if (abs(Last_FeedrateKnob_W - FeedrateKnob_W) >= 3) || UsingFeedrateKnob_M
 THEN FinalFeedOverride_W = FeedrateKnob_W, KbOverride_W = FeedrateKnob_W,
 Last_FeedrateKnob_W = FeedrateKnob_W, set UsingFeedrateKnob_M

;Limit keyboard override to parm 39. Allowing the FeedrateKnob_W to go past
;parm 39, but keeping the KbOverride_W limited keeps the "dead space"
;down and allows the PLC to respond to changes in the FeedrateKnob_W even if
;above 120. Overall override is still limited later but this gives better
;response in changing between KbOverride_W & the FeedrateKnob_W
if KbOverride_W > SV_MACHINE_PARAMETER_39
 THEN KbOverride_W = SV_MACHINE_PARAMETER_39

if !UsingFeedrateKnob_M && !JogOverOnly_M
 THEN FinalFeedOverride_W = KbOverride_W

;---
; 4 & 5. Limit override percentage to value set in Parameter 39
;---
;------------------Limit final override percentage to parm 39-------------------
if FinalFeedOverride_W > SV_MACHINE_PARAMETER_39
 THEN FinalFeedOverride_W = SV_MACHINE_PARAMETER_39

if FinalFeedOverride_W < 0 THEN FinalFeedOverride_W = 0

Page 95

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

;--
; Override Controls
; It is important that the plc program only writes to SV_PLC_Feedrate_Knob once per pass
;--
; Override control bit for the feedrate override
; 1 == feedrate override knob will effect feedrate
; 0 == override knob has NO effect on feedrate
IF !SV_PC_OVERRIDE_CONTROL_FEEDRATE_OVERRIDE THEN FinalFeedOverride_W = 100

;---
; 6. Send override percentage to CNC11
;---
;----------------Send override to PC for modification if needed---------------
if true THEN SV_PLC_Feedrate_Knob = FinalFeedOverride_W

;---
; 7. Copy the feedrate override sent from the PC to the MPU11.
;---
;--
; Normally a number from 0.0-2.0, no limitations although V will not exceed
; Vmax. A negative number in here would be extremely bad.
;--
IF true THEN SV_PLC_FEEDRATE_OVERRIDE = SV_PC_FEEDRATE_PERCENTAGE/100.0

;--MPU11 Jog Panel Key Functions
IF KB_F9 then (F9PD)
IF KbTogRapidOver_M || (F9PD && (SV_PROGRAM_RUNNING || SV_MDI_MODE))
 THEN (RapidOverPD)
IF RapidOverPD^ SelectRapidOverride THEN (SelectRapidOverride)
IF OnAtPowerUp_M THEN SET SelectRapidOverride
IF (CycleCancelKey || KbCycleCancel_M) && (SV_PROGRAM_RUNNING || SV_MDI_MODE)
 THEN (DoCycleCancel)
IF (CycleStartKey || KbCycleStart_M) THEN (DoCycleStart)

IF (Ax1PlusJogKey || KbJogAx1Plus_M) && !Ax1PlusJogDisabled_M &&
 !(IncrContLED && FinalFeedOverride_W == 0) THEN (DoAx1PlusJog)
IF (Ax1MinusJogKey || KbJogAx1Minus_M) && !Ax1MinusJogDisabled_M &&
 !(IncrContLED && FinalFeedOverride_W == 0) THEN (DoAx1MinusJog)
IF (Ax2PlusJogKey || KbJogAx2Plus_M) && !Ax2PlusJogDisabled_M &&
 !(IncrContLED && FinalFeedOverride_W == 0) THEN (DoAx2PlusJog)
IF (Ax2MinusJogKey || KbJogAx2Minus_M) && !Ax2MinusJogDisabled_M &&
 !(IncrContLED && FinalFeedOverride_W == 0) THEN (DoAx2MinusJog)

IF (Ax3PlusJogKey || KbJogAx3Plus_M) &&
 !(IncrContLED && FinalFeedOverride_W == 0) THEN (DoAx3PlusJog)
IF (Ax3MinusJogKey || KbJogAx3Minus_M) &&
 !(IncrContLED && FinalFeedOverride_W == 0) THEN (DoAx3MinusJog)
IF (Ax4PlusJogKey || KbJogAx4Plus_M) &&
 !(IncrContLED && FinalFeedOverride_W == 0) THEN (DoAx4PlusJog)
IF (Ax4MinusJogKey || KbJogAx4Minus_M) &&
 !(IncrContLED && FinalFeedOverride_W == 0) THEN (DoAx4MinusJog)

IF (Aux1Key || KbAux1Key_M) THEN (DoAux1Key)
IF (Aux2Key || KbAux2Key_M) THEN (DoAux2Key)
IF (Aux3Key || KbAux3Key_M) THEN (DoAux3Key)
IF (Aux4Key || KbAux4Key_M) THEN (DoAux4Key)
IF (Aux5Key || KbAux5Key_M) THEN (DoAux5Key)

Page 96

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF (Aux6Key || KbAux6Key_M) THEN (DoAux6Key)
IF (Aux7Key || KbAux7Key_M) THEN (DoAux7Key)
IF (Aux8Key || KbAux8Key_M) THEN (DoAux8Key)
IF (Aux9Key || KbAux9Key_M) THEN (DoAux9Key)
IF (Aux10Key || KbAux10Key_M) THEN (DoAux10Key)
IF (Aux11Key || KbAux11Key_M) THEN (DoAux11Key)
IF (Aux12Key || KbAux12Key_M) THEN (DoAux12Key)
IF x1JogLED THEN (SelectX1JogInc)
IF x10JogLED THEN (SelectX10JogInc)
IF x100JogLED THEN (SelectX100JogInc)
IF IncrContLED THEN (SelectIncContJog)
IF FastSlowLED THEN (SelectFastSlowJog)
IF MPGLED THEN (SelectMpgMode)
IF FeedHoldLED THEN (DoFeedHold)

;--Coolant Functions

;--Toggle auto coolant mode
IF CoolAutoManKey || KbTogCoolAutoMan_M THEN (CoolantAutoManualPD)

IF (!CoolAutoManLED && CoolantAutoManualPD) || OnAtPowerUp_M
 THEN SET CoolAutoManLED

IF (CoolAutoManLED && CoolantAutoManualPD)
 THEN RST CoolAutoManLED

;--Report coolant mode to CNC11
IF CoolAutoManLED THEN (SelectCoolAutoMan)

;--Display coolant mode message
;changing to auto coolant mode ;9050 Auto Coolant Selected 2 + 50*256
IF (!CoolAutoManLED && CoolantAutoManualPD)
 THEN AsyncMsg_W = 12802, MSG AsyncMsg_W

;changing to manual coolant mode ;9051 Manual Coolant Selected 2 + 51*256
IF (CoolAutoManLED && CoolantAutoManualPD)
 THEN AsyncMsg_W = 13058, MSG AsyncMsg_W

;--Flood coolant on/off
IF ((CoolFloodKey || KbFloodOnOff_M) && !CoolAutoManLED) ||
 (M8 && CoolAutoManLED) || (DoCycleStart && M8 && CoolAutoManLED)
 THEN (CoolantFloodPD)

IF CoolantFloodPD && !CoolFloodLED Then SET CoolFloodLED, Set Flood

IF SV_STOP || (CoolantFloodPD && CoolFloodLED) || (!M8 && CoolAutoManLED) ||
 (M8 && !CoolAutoManLED) || DoToolCheck THEN Rst Flood, Rst CoolFloodLED

IF CoolFloodLED THEN (SelectCoolantFlood)

;--Mist coolant on/off
IF ((CoolMistKey || KbMistOnOff_M)&& !CoolAutoManLED) || (M7 && CoolAutoManLED)
 || (DoCycleStart && M7 && CoolAutoManLED) THEN (CoolantMistPD)

IF (CoolantMistPD && !CoolMistLED) THEN SET Mist, SET CoolMistLED

IF SV_STOP || (CoolantMistPD && CoolMistLED) || (!M7 && CoolAutoManLED) ||
 (M7 && !CoolAutoManLED) || DoToolCheck THEN Rst Mist, Rst CoolMistLED

Page 97

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF CoolMistLED THEN (SelectCoolantMist)

;--Spindle Control
;---
; JOGBOARD SPINDLE CONTROL
; Spindle Auto Mode / Manual mode toggles via Auto/Man jog panel key
; CW/CCW jog keys determine spindle direction in manual mode
; M3/M4 system variables determine spindle direction in Auto mode
; Spindle can be stopped and restarted in auto mode using
; spin stop/start jog keys
;---
;--Select Auto or Manual Spindle Operation Mode
;Triggers to Toggle Auto/Manual Spindle Mode
IF SpinAutoManKey || KbTogSpinAutoMan_M THEN (SpinAutoManPD)

;--Set spindle to auto mode on startup
IF (SpinAutoManPD && !SpinAutoModeLED) || OnAtPowerUp_M
 THEN SET SpinAutoModeLED

;--Set spindle to manual mode
if SpinAutoManPD && SpinAutoModeLED THEN rst SpinAutoModeLED

;--Report the Spindle mode to CNC11
IF SpinAutoModeLED THEN (SelectManAutoSpindle)

;--Set triggers to start and stop the spindle
; NOTE: SpindlePause_M allows the operator to start and stop the
; spindle with the spin start and stop keys while in a job. In
; this case, pressing the spindle start key will only restart
; the spindle if an M3 or M4 had previously been issued and is
; still active.

IF ((SpinStartKey || KbSpinStart_M) && !SpinAutoModeLED) ||
 (SpinAutoModeLED && (M3 || M4) && !SpindlePause_M) ||
 ((SpinStartKey || KbSpinStart_M) && ((M3 || M4) && SpinAutoModeLED))
 THEN (SpinStartPD), Rst SpindlePause_M

If (SpinAutoModeLED && (M3 || M4) && (SpinStopKey || KbSpinStop_M))
 THEN set SpindlePause_M

If (SpinStopKey || KbSpinStop_M) || (SpinAutoModeLED && !M3 && !M4) ||
 (SpinAutoManPD && SpindleEnableOut) || (SV_PC_RIGID_TAP_SPINDLE_OFF &&
 SpinAutoModeLED) THEN (SpinStopPD)

;--Adjust spindle override when entering manual or auto spin mode
;Set the override value to 100% when spin auto mode is first selected
IF SpinAutoManPD && !SpinAutoModeLED
 THEN SV_PLC_SPINDLE_KNOB = 100,
 SET SpinAutoModeLED

;Set the override value to 10% whenever manual mode is entered
IF SpinAutoManPD && SpinAutoModeLED
 THEN SV_PLC_SPINDLE_KNOB = 10, Rst SpinAutoModeLED

;--Set spindle direction
;------------------Set Clockwise direction
IF ((KbSpinCW_M || SpinCWKey) && !SpinAutoModeLED) || (M3 && SpinAutoModeLED)

Page 98

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 || (M3 && DoCycleStart) then (SpinCWPD)
IF SpinCWPD then rst SpindleDirectionOut
IF !SpindleDirectionOut then (SpindleCWLED), (SelectSpindleCW)

;---------------Set Counterclockwise direction
IF ((KbSpinCCW_M || SpinCCWKey) && !SpinAutoModeLED) || (M4 && SpinAutoModeLED)
 || (M4 && DoCycleStart) then (SpinCCWPD)
IF SpinCCWPD then set SpindleDirectionOut
IF SpindleDirectionOut then (SpindleCCWLED), (SelectSpindleCCW)

;---
; Turn spindle on/off
;---
IF ProbeDetect && SpinStartPD THEN set ProbeFault_M

IF (SpindleEnableOut || SpinStartPD) &&
 !(SpinStopPD || SV_STOP || ProbeDetect)
 THEN (SpindleEnableOut)

IF !SpindleEnableOut THEN (DoSpindleStop)

;---
; SPINDLE OVERRIDE CONTROL
; Jogboard (-, +, and 100% keys),
; Keyboard "ctrl" + "<", "ctrl" + ">", "ctrl" + "/"
;---
IF SpinOverPlusKey || KbIncSpinOver_M
 THEN SV_PLC_SPINDLE_KNOB = SV_PLC_SPINDLE_KNOB + 1
IF SpinOverMinusKey || KbDecSpinOver_M
 THEN SV_PLC_SPINDLE_KNOB = SV_PLC_SPINDLE_KNOB - 1
IF SpinOver100Key || KbSpinOver100_M || OnAtPowerUp_M
 THEN SV_PLC_SPINDLE_KNOB = 100

IF SV_PLC_SPINDLE_KNOB < 1 THEN SV_PLC_SPINDLE_KNOB = 1
IF SV_PLC_SPINDLE_KNOB > 200 THEN SV_PLC_SPINDLE_KNOB = 200

IF SV_PLC_SPINDLE_KNOB == 100 THEN
 (SpinOver100LED),
 (SelectSpinOr100)

IF SV_PLC_SPINDLE_KNOB < 100 THEN
 (SpinOverMinusLED),
 (DoDecreaseSpindleOr)

IF SV_PLC_SPINDLE_KNOB > 100 THEN
 (SpinOverPlusLED),
 (DoIncreaseSpindleOr)

;--Output 12-bit DAC value for spindle control
;---
; Read spindle range inputs and/or range M codes
;
; NOTE: SV_SPINDLE_LOW_RANGE & SV_SPINDLE_MID_RANGE M are used to report the
; selected spindle range to CNC11
;---
; hi med-high med-low low
; 0 1 1 0 SV_SPINDLE_MID_RANGE M
; 0 0 1 1 SV_SPINDLE_LOW_RANGE

Page 99

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

If SpinLowRange then set SpinLowRange_M
If !SpinLowRange then rst SpinLowRange_M

IF !SpinLowRange THEN (SpinHighRange_M),
 RST SV_SPINDLE_LOW_RANGE,
 rst SV_SPINDLE_MID_RANGE

if SpinLowRange_M && (SV_MACHINE_PARAMETER_65 > .01)
 THEN SpinRangeAdjust = SV_MACHINE_PARAMETER_65,
 SET SV_SPINDLE_LOW_RANGE,
 rst SV_SPINDLE_MID_RANGE

if SpinHighRange_M then SpinRangeAdjust = 1
if SpinRangeAdjust == 0 then SpinRangeAdjust = 1

;--
; Read commanded spindle speed, max & min
;
; ***NOTE*** SV_PC_COMMANDED_SPINDLE_SPEED already has override
; factored in.
;--
IF True THEN SpinSpeedCommand_FW = SV_PC_COMMANDED_SPINDLE_SPEED,
 CfgMinSpeed_FW = SV_PC_CONFIG_MIN_SPINDLE_SPEED,
 CfgMaxSpeed_FW = SV_PC_CONFIG_MAX_SPINDLE_SPEED

;--
; If commanded spindle speed is < Min Spin Speed * SpinRangeAdjust
; & commanded spindle speed > 0, force to commanded spindle speed
; = min spin speed value * SpinRangeAdjust.
;--
IF (SpinSpeedCommand_FW > 0.0) &&
 (SpinSpeedCommand_FW < (CfgMinSpeed_FW * SpinRangeAdjust))
 THEN SpinSpeedCommand_FW = (CfgMinSpeed_FW * SpinRangeAdjust),
 ErrorCode_W = MIN_SPEED_MSG

;---
; If SpinSpeedCommand_FW > Max Spin Speed * SpinRangeAdjust, force
; SpinSpeedCommand_FW = max spin speed value * SpinRangeAdjust.
;---
IF SpinSpeedCommand_FW > (CfgMaxSpeed_FW * SpinRangeAdjust)
 THEN SpinSpeedCommand_FW = (CfgMaxSpeed_FW * SpinRangeAdjust)

;--
; Convert Spindle "S" command to 12 bit value for output to DAC
;--
; Commanded Spindle speed (includes override factor) is sent down from CNC11
; in SV_PC_COMMANDED_SPINDLE_SPEED. This value needs to be converted to a
; 12 bit value (0-4095) where full scale = SV_PC_CONFIG_MAX_SPINDLE_SPEED.

; Calculate #RPM's per bit of resolution
IF CfgMaxSpeed_FW > 0.0 THEN RPMPerBit_FW = CfgMaxSpeed_FW/4095.0
IF CfgMaxSpeed_FW <= 0.0 THEN RPMPerBit_FW = 1.0

;Convert RPM to 12 bit value
IF True THEN TwelveBitSpeed_FW = SpinSpeedCommand_FW/RPMPerBit_FW

; Factor in gear range

Page 100

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF true THEN TwelveBitSpeed_FW = (TwelveBitSpeed_FW/SpinRangeAdjust)

;Convert to integer word for DAC & I/O display
if true then TwelveBitSpeed_W = TwelveBitSpeed_FW

; Bound min to 0, max to 4095
IF TwelveBitSpeed_W < 0 THEN TwelveBitSpeed_W = 0
IF TwelveBitSpeed_W > 4095 THEN TwelveBitSpeed_W = 4095

; Output to DAC
If true then WTB TwelveBitSpeed_W SpinAnalogOutBit0 12

;Display calculated RPM value on PC
IF True THEN SV_PLC_SPINDLE_SPEED = SpinSpeedCommand_FW

;===
 CheckCycloneStatusStage
;===
; Due to amount of time it takes to retrieve data from the cyclone, this stage
; is only called few times per second to help reduce scan time of the main PLC
; program.

; The logic below is the equivalent to the following:
; IF true THEN BITTST SV_PC_CYCLONE_STATUS_2 0 Axis1FiberOk_M,
; BITTST SV_PC_CYCLONE_STATUS_2 1 Axis2FiberOk_M,
; BITTST SV_PC_CYCLONE_STATUS_2 2 Axis3FiberOk_M,
; BITTST SV_PC_CYCLONE_STATUS_2 3 Axis4FiberOk_M,
; BITTST SV_PC_CYCLONE_STATUS_2 4 Axis5FiberOk_M,
; BITTST SV_PC_CYCLONE_STATUS_2 5 Axis6FiberOk_M,
; BITTST SV_PC_CYCLONE_STATUS_2 6 Axis7FiberOk_M,
; BITTST SV_PC_CYCLONE_STATUS_2 7 Axis8FiberOk_M
IF true THEN WTB SV_PC_CYCLONE_STATUS_2 Axis1FiberOk_M

; Generate some messages for fiber or wire to MPU11 having issues
IF SV_AXIS_VALID_1 && !SV_DRIVE_ONLINE_1 THEN ErrorCode_W = AXIS1_INFLT, SET
DriveComFltIn_M
IF SV_AXIS_VALID_2 && !SV_DRIVE_ONLINE_2 THEN ErrorCode_W = AXIS2_INFLT, SET
DriveComFltIn_M
IF SV_AXIS_VALID_3 && !SV_DRIVE_ONLINE_3 THEN ErrorCode_W = AXIS3_INFLT, SET
DriveComFltIn_M
IF SV_AXIS_VALID_4 && !SV_DRIVE_ONLINE_4 THEN ErrorCode_W = AXIS4_INFLT, SET
DriveComFltIn_M
IF SV_AXIS_VALID_5 && !SV_DRIVE_ONLINE_5 THEN ErrorCode_W = AXIS5_INFLT, SET
DriveComFltIn_M
IF SV_AXIS_VALID_6 && !SV_DRIVE_ONLINE_6 THEN ErrorCode_W = AXIS6_INFLT, SET
DriveComFltIn_M
IF SV_AXIS_VALID_7 && !SV_DRIVE_ONLINE_7 THEN ErrorCode_W = AXIS7_INFLT, SET
DriveComFltIn_M
IF SV_AXIS_VALID_8 && !SV_DRIVE_ONLINE_8 THEN ErrorCode_W = AXIS8_INFLT, SET
DriveComFltIn_M

; Generate some messages for fiber or wire to drive having issues
IF SV_AXIS_VALID_1 && SV_DRIVE_ONLINE_1 && SV_MASTER_ENABLE && !Axis1FiberOk_M
 THEN ErrorCode_W = AXIS1_OUTFLT, set DriveComFltOut_M
IF SV_AXIS_VALID_2 && SV_DRIVE_ONLINE_2 && SV_MASTER_ENABLE && !Axis2FiberOk_M
 THEN ErrorCode_W = AXIS2_OUTFLT, set DriveComFltOut_M
IF SV_AXIS_VALID_3 && SV_DRIVE_ONLINE_3 && SV_MASTER_ENABLE && !Axis3FiberOk_M
 THEN ErrorCode_W = AXIS3_OUTFLT, set DriveComFltOut_M

Page 101

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF SV_AXIS_VALID_4 && SV_DRIVE_ONLINE_4 && SV_MASTER_ENABLE && !Axis4FiberOk_M
 THEN ErrorCode_W = AXIS4_OUTFLT, set DriveComFltOut_M
IF SV_AXIS_VALID_5 && SV_DRIVE_ONLINE_5 && SV_MASTER_ENABLE && !Axis5FiberOk_M
 THEN ErrorCode_W = AXIS5_OUTFLT, set DriveComFltOut_M
IF SV_AXIS_VALID_6 && SV_DRIVE_ONLINE_6 && SV_MASTER_ENABLE && !Axis6FiberOk_M
 THEN ErrorCode_W = AXIS6_OUTFLT, set DriveComFltOut_M
IF SV_AXIS_VALID_7 && SV_DRIVE_ONLINE_7 && SV_MASTER_ENABLE && !Axis7FiberOk_M
 THEN ErrorCode_W = AXIS7_OUTFLT, set DriveComFltOut_M
IF SV_AXIS_VALID_8 && SV_DRIVE_ONLINE_8 && SV_MASTER_ENABLE && !Axis8FiberOk_M
 THEN ErrorCode_W = AXIS8_OUTFLT, set DriveComFltOut_M

If !EstopOk THEN rst DriveComFltIn_M, rst DriveComFltOut_M
If DriveComFltOut_M || DriveComFltIn_M THEN set AxisFault_M

;check PLC status bit
IF TRUE THEN BitTst SV_PC_CYCLONE_STATUS_1 21 PLCBusExtDevEn_M

;check input fiber
IF !SV_PLC_BUS_ONLINE THEN ErrorCode_W = PLC_INFLT,
 rst PLCBus_Oe_M, set PLCFault_M

;check output fiber
IF SV_PLC_BUS_ONLINE && PLCBus_Oe_M && !PLCBusExtDevEn_M
 THEN ErrorCode_W = PLC_OUTFLT, SET PLCFault_M

;clear PLC errors
IF PLCFault_M && SV_PLC_BUS_ONLINE && PLCBusExtDevEn_M && !EstopOk
 THEN RST PLCFault_M, ErrorCode_W = PLC_FLT_CLR, SET PLCBus_Oe_M

IF True THEN RST CheckCycloneStatusStage

;===
 AxesEnableStage
;===
; Since CNC11 v3.03r24, the MPU11 has managed axis enables
; directly. The PLC program has no further responsibility
; for SV_ENABLE_AXIS_n

;clear axis fault errors
IF AxisFault_M && !(DriveComFltOut_M || DriveComFltIn_M) && !EstopOk
 THEN ErrorCode_W = AXIS_FLT_CLR, RST AxisFault_M

;read the status bits
IF True THEN SET CycloneStatus_T
IF CycloneStatus_T THEN SET CheckCycloneStatusStage, RST CycloneStatus_T

;turn on drives if no drive or drive fiber errors
IF !DriveComFltIn_M && !DriveComFltOut_M THEN SET SV_MASTER_ENABLE
; (SV_MASTER_ENABLE will be turned off by stalls and other
; errors in the Fault-handling section of MainStage, below.)

;(If there is any drive or drive fiber error, then AxisFault_M will have
; been set previously, which will cause SV_STOP to be set, and SV_MASTER_ENABLE
; to be reset, later in MainStage)

;===

Page 102

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

 MainStage
;===
;Do gather if commanded (uncomment and recompile for debugging purposes)
;IF Aux11Key THEN (Aux11KeyPD)
;If Aux11KeyPD THEN (SV_TRIGGER_PLOT_DUMP)

;read parameter 178 and check the Lube NO/NC state

; Get the previous value of the debounce configuration word
IF True THEN Inputs_9_12_W = SV_PLC_DEBOUNCE_3

; Invert input 9
IF InvLubeOk_M THEN BITSET Inputs_9_12_W 6
IF !InvLubeOk_M THEN BITRST Inputs_9_12_W 6

 ; Invert input 10
IF InvSpinInverterOk_M THEN BITSET Inputs_9_12_W 14
IF !InvSpinInverterOk_M THEN BITRST Inputs_9_12_W 14

; Write back to the debounce configuration word
IF true THEN SV_PLC_DEBOUNCE_3 = Inputs_9_12_W

;--
; Probe protection while jogging
;--
If MechanicalProbe && !JogProbeFault_M && (DoAx1PlusJog || DoAx1MinusJog ||
 DoAx2PlusJog || DoAx2MinusJog || DoAx3PlusJog || DoAx3MinusJog ||
 DoAx4PlusJog || DoAx4MinusJog || DoAx5PlusJog || DoAx5MinusJog)
 THEN (JogProbeFaultPD)

IF MechanicalProbe && !JogProbeFault_M && FastSlowLED THEN SET LastProbeMode_M
IF MechanicalProbe && !JogProbeFault_M && !FastSlowLED THEN RST LastProbeMode_M

IF JogProbeFaultPD && !JogProbeFault_M THEN SET JogProbeFault_M, SET DoCycleCancel

IF JogProbeFault_M THEN ErrorCode_W = (PROBE_JOG_FAULT_MSG + 1),
 SET FastSlowLED

IF !MechanicalProbe && JogProbeFault_M && !LastProbeMode_M THEN RST FastSlowLED

IF !MechanicalProbe THEN RST JogProbeFault_M,
 RST Ax1PlusJogDisabled_M,
 RST Ax1MinusJogDisabled_M,
 RST Ax2PlusJogDisabled_M,
 RST Ax2MinusJogDisabled_M

;--Clamp
IF M10 THEN (Clamp) ; cleared by M11 or by program not running

;--Process important Keyboard keys all the time
;--Cycle Cancel (ESC)
if Kb_Escape THEN (KbCycleCancel_M)
;KbFeedHold_M (spacebar)
if Kb_spacebar && AllowKbInput_M && SV_PROGRAM_RUNNING then (KbFeedHold_M)

if SV_PC_VIRTUAL_JOGPANEL_ACTIVE THEN (KbJpActive_M)

;Call KeyboardEvents stage if needed

Page 103

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

IF Kb_L_Ctrl || Kb_R_Ctrl ||
 Kb_L_Shift || Kb_R_Shift ||
 Kb_R_Alt || Kb_L_Alt || KbJpActive_M
 THEN SET KeyboardEventsStage

if (Kb_L_Ctrl || Kb_R_Ctrl || Kb_L_Shift || Kb_R_Shift || Kb_R_Alt || Kb_L_Alt)
 && (Kb_j || Kb_f || kb_a || kb_s) && !AllowKbInput_M
 THEN ErrorCode_W = KB_JOG_MSG

;--Handle Faults
if !EStopOk || PLCFault_M || SV_STALL_ERROR || SpindleFault_M ||
 LubeFault_M || AxisFault_M || ProbeFault_M || OtherFault_M THEN set SV_STOP

IF SV_Stop THEN RST SV_MASTER_ENABLE

IF !EstopOk THEN RST SV_STALL_ERROR,
 RST LubeFault_M,
 RST SpindleFault_M,
 RST OtherFault_M,
 RST ProbeFault_M,
 RST ProbeMsgSent_M

IF Initialize_T && !LubeOk && !SV_PROGRAM_RUNNING
 THEN SET LubeFault_M, ErrorCode_W = LUBE_FAULT_MSG

IF !LubeOk && SV_PROGRAM_RUNNING THEN ErrorCode_W = LUBE_WARNING_MSG

IF Initialize_T && !SpindleInverterOk
 THEN ErrorCode_W = SPINDLE_FAULT_MSG, SET SpindleFault_M
IF !EstopOK && !SpindleInverterOk THEN (InverterResetOut)

; Echo some system variables to memory bits, for troubleshooting only
IF SV_MASTER_ENABLE THEN (MasterEnable_M)
IF SV_STALL_ERROR THEN (Stall_M)
IF SV_STOP THEN (Stop_M)

IF !SV_STOP THEN (NoFaultOut)

IF EStopOk &&
 !(PLCFault_M || SV_STALL_ERROR || SpindleFault_M || LubeFault_M ||
 AxisFault_M || OtherFault_M || SoftwareNotReady_M || PLCExecutorFault_M)
 THEN RST SV_STOP

IF ProbeFault_M && !ProbeMsgSent_M
 THEN ErrorCode_W = PROBE_FAULT_MSG, SET ProbeMsgSent_M

;--M-Codes
; Reset these M-codes if not in CNC Program Running mode
IF !(SV_PROGRAM_RUNNING || SV_MDI_MODE) THEN RST M3, RST M4, RST M8, RST M7, RST M10

;--turn off default setup variable
IF true THEN RST OnAtPowerUp_M

;==
 SetErrorStage
;==
IF !((ErrorCode_W % 256 == 1) || (ErrorCode_W % 256 == 2)) THEN JMP BadErrorStage
IF true THEN MSG ErrorCode_W

Page 104

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

If ErrorCode_W != MSG_CLEARED_MSG Then MsgClear_T = 1000, set MsgClear_T

IF (!EstopOk && !SoftwareNotReady_M) ||
 ((ErrorCode_W != MSG_CLEARED_MSG) && (ErrorCode_W % 2 == 0) && MsgClear_T)
 THEN ErrorCode_W = MSG_CLEARED_MSG, RST MsgClear_T

;===
 BadErrorStage
;===
IF true THEN AsyncMsg_W = 2+256*100, MSG AsyncMsg_W, AsyncMsg_W = 0
IF True THEN RST BadErrorStage

Page 105

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Appendix B: Jog Panel Mapping

JogPanel Inputs and Outputs
The shorthand reference for JogPanel Inputs and Outputs JPI1-JPI256 and JPO1-JP0256 are remapping of
Inputs and Outputs 1057-1312. Note that JPI stands for Jog Panel Input and JPO stands for Jog Panel Output
so the letters after JP are the letters 'eye' and 'oh' capitalized.

Spindle +
Key JPI1/INP1057

LED JPO1/OUT1057

Spindle Auto/Man
Key JPI2/INP1058

LED JPO2/OUT1058

Aux1
Key JPI3/INP1059

LED JPO3/OUT1059

Aux2
Key JPI4/INP1060

LED JPO4/OUT1060

Aux3
Key JPI5/INP1061

LED JPO5/OUT1061

Spindle 100%
Key JPI6/INP1062

LED JPO6/OUT1062

Spindle CW
Key JPI7/INP1063

LED JPO7/OUT1063

Aux4
Key JPI8/INP1064

LED JPO8/OUT1064

Aux5
Key JPI9/INP1065

LED JPO9/OUT1065

Aux6
Key JPI10/INP1066

LED JPO10/OUT1066

Spindle -
Key JPI11/INP1067

LED JPO11/OUT1067

Spindle CCW
Key JPI12/INP1068

LED JPO12/OUT1068

Aux7
Key JPI13/INP1069

LED JPO13/OUT1069

Aux8
Key JPI14/INP1070

LED JPO14/OUT1070

Aux9
Key JPI15/INP1071

LED JPO15/OUT1071

Spindle Stop
Key JPI16/INP1072

LED JPO16/OUT1072

Spindle Start
Key JPI17/INP1073

LED JPO17/OUT1073

Aux10-
Key JPI18/INP1074

LED JPO18/OUT1074

Aux11-
Key JPI19/INP1075

LED JPO19/OUT1075

Aux12-
Key JPI20/INP1076

LED JPO20/OUT1076

Coolant Auto/Man
Key JPI21/INP1077

LED JPO21/OUT1077

Flood
Key JPI22/INP1078

LED JPO22/OUT1078

Mist
Key JPI23/INP1079

LED JPO23/OUT1079

Aux13-
Key JPI24/INP1080

LED JPO24/OUT1080

Aux14-
Key JPI25/INP1081

LED JPO25/OUT1081

INCR/CONT
Key JPI26/INP1082

LED JPO26/OUT1082

X1
Key JPI27/INP1083

LED JPO27/OUT1083

X10
Key JPI28/INP1084

LED JPO28/OUT1084

X100
Key JPI29/INP1085

LED JPO29/OUT1085

MPG
Key JPI30/INP1086

LED JPO30/OUT1086

Axis4+
Key JPI31/INP1087

LED JPO31/OUT1087

Blank-
Key JPI32/INP1088

LED JPO32/OUT1088

Axis2+
Key JPI33/INP1089

LED JPO33/OUT1089

Blank-
Key JPI34/INP1090

LED JPO34/OUT1090

Axis3+
Key JPI35/INP1091

LED JPO35/OUT1091

Blank-
Key JPI36/INP1092

LED JPO36/OUT1092

Axis1-
Key JPI37/INP1093

LED JPO37/OUT1093

SLOW/FAST
Key JPI38/INP1094

LED JPO38/OUT1094

Axis1+
Key JPI39/INP1095

LED JPO39/OUT1095

Blank-
Key JPI40/INP1096

LED JPO40/OUT1096

Axis4-
Key JPI41/INP1097

LED JPO41/OUT1097

Blank-
Key JPI42/INP1098

LED JPO42/OUT1098

Axis2-
Key JPI43/INP1099

LED JPO43/OUT1099

Blank-
Key JPI44/INP1100

LED JPO44/OUT1100

Axis3-
Key JPI45/INP1101

LED JPO45/OUT1101

CYCLE CANCEL
Key JPI46/INP1102

LED JPO46/OUT1102

SINGLE BLOCK
Key JPI47/INP1103

LED JPO47/OUT1103

TOOL CHECK*
Key JPI48/INP1104

LED JPO50/OUT1106

FEED HOLD*
Key JPI49/INP1105

LED JPO48/OUT1104

CYCLE START*
Key JPI50/INP1106

LED JPO49/OUT1105

Page 106

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Appendix C: Keyboard Jog Mapping

Notes on Keyboard Jogging
The following table lists the SV_PC_KEYBOARD_KEY_1 to _104 system variables and the keys that they
represent on a 101-key or 104-key QWERTY US English traditional keyboard. These keys have not been tested
with any international/multilingual keyboard.

There is a System Variable called SV_PC_VIRTUAL_JOGPANEL_ACTIVE that is SET when the Keyboard
Jogging screen (Alt.-J) is visible from the main menu of CNC11. Keyboard Jogging should not allow axis jogging
unless this system variable is set, otherwise the motors may move while cursoring around in the Load menu.
The other standard Jog Panel functions can be allowed all the time or restricted based on safety requirements
for the particular installation. By default, standard PLC programs with Keyboard Jogging allow everything except
axis jogging when the Keyboard Jogging screen is not visible. This mirrors the functionality of the Jog Panel
itself.

Keys left blank should not be used. The second character of the two-character keys is the Shifted key. This
means that SV_PC_KEYBOARD_KEY_60 indicating the a or A has been pushed will look the same in a PLC
program. It is the responsibility of the programmer to look for the Shift key separately. On many keyboards there
is at least one Windows, System, Print Screen, Scroll Lock and Pause/Break key and sometimes multiple,
but these keys are not accessible in the PLC program. There are usually two Alt., Shift and Control keys as
well on each keyboard and the PLC sees either one as the same key-press. The right hand key is reported as
the left key being pressed so do not look for the right key. The number pad may not be present on every
keyboard so it is not advised to write a Jogging PLC program looking for these keys to be used except as a
custom program. The number pad keys are preceded with NP_ in the table below.

Page 107

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Keyboard Key Numbering Table

Index Key Index Key Index Key Index Key

1 ESC 27 0) 53 END 79 bB

2 F1 28 -_ 54 PAGEDOWN 80 nN

3 F2 29 =+ 55 NP_7 81 mM

4 F3 30 BACKSPACE 56 NP_8 82 ,<

5 F4 31 INSERT 57 NP_9 83 .>

6 F5 32 HOME 58 NP_PLUS 84 /?

7 F6 33 PAGEUP 59 CAPSLOCK 85 Right
SHIFT(74)*

8 F7 34 NUMLOCK 60 aA 86 \|

9 F8 35 NP_DIVIDE 61 sS 87 UP Arrow

0 F9 36 NP_MULT 62 dD 88 NP_1

11 F10 37 NP_MINUS 63 fF 89 NP_2

12 F11 38 TAB 64 gG 90 NP_3

13 F12 39 qQ 65 hH 91 NP_ENTER

14 40 wW 66 jJ 92 Left CTRL

15 41 eE 67 kK 93

16 42 rR 68 lL 94 Left ALT

17 `~ 43 tT 69 ;: 95 SPACEBAR

18 1! 44 yY 70 '” 96 Right ALT(94)*

19 2@ 45 uU 71 NP_4 97

20 3/# 46 iI 72 NP_5 98

21 4$ 47 oO 73 NP_6 99 Right CTRL(92)*

22 5% 48 pP 74 Left SHIFT 100 LEFT Arrow

23 6^ 49 [{ 75 zZ 101 DOWN Arrow

24 7& 50]} 76 xX 102 RIGHT Arrow

25 8* 51 ENTER 77 cC 103 NP_0

26 9(52 DELETE 78 vV 104 NP_DP
* key event returns same index as the Left side key (shown in parenthesis)

Page 108

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Appendix D: System Variables

System Variable Types
The following table gives the shorthand version of the data types listed below in the Type column.

Type Description

M Memory bit

I32 32-bit signed Integer

I64 64-bit signed Integer

F32 32-bit Floating-point (float)

F64 64-bit Floating-point (double)

Notes on Certain System Variables
There are some System Variables that are written to or read from outside of the scope of execution of the PLC
program. These System Variables should be changed in only one place in the PLC program to avoid odd effects
and problems troubleshooting.

Externally Read System Variables

The table below lists the system variables that are read external to the PLC program execution and that could
have different values if the PLC program changed them at several places. In general, these variables should
only be updated once in a single pass. Rather than rely on stage activity or other complicated logic to ensure
they are updated once per pass, it is best to write to a temporary variable and then use the temporary variable to
set the system variable only once.

Bad Example:

IF EStop THEN SET SV_STOP
IF !EStop THEN RST SV_STOP
IF LowLube THEN SET SV_STOP

Good Example:

IF EStop THEN SET TEMP_SV_STOP
IF !EStop THEN RST TEMP_SV_STOP
IF LowLube THEN SET TEMP_SV_STOP
IF TEMP_SV_STOP THEN SET SV_STOP
IF !TEMP_SV_STOP THEN RST SV_STOP

System Variable Notes

SV_DRIVE_CONTROL_x Used to SET the auxiliary output of an OPTIC4 axis.

SV_STOP*

SV_SPINDLE_RPM_MODE* Used for “C” axis.

SV_PLC_FEEDRATE_KNOB*

SV_PLC_FEEDRATE_OVERRIDE*

SV_PLC_FUNCTION_34* Rapid Override.

Page 109

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

This usage should be deprecated in favor of
SV_PC_TOGGLE_RAPID_OVERRIDE

SV_PLC_OP_IN_PROGRESS This SV should not be used. It is listed here for
completeness.

SV_MPG_x_AXIS_SELECT The change will not take effect unless MPG movement
is stopped.

SV_MPG_x_MULTIPLIER

SV_MPG_x_WINDUP_MODE

SV_MPG_x_ENABLED The change will not take effect unless MPG movement
is stopped.

SV_MPG_x_OFFSET_MODE The change will not take effect unless MPG movement
is stopped.

SV_MPG_x_PLC_MPG_MODE The change will not take effect unless MPG movement
is stopped.

Most likely to have unwanted side effects.

Externally Written System Variables

The table below lists the system variables that are written external to PLC program execution and therefore a
PLC program could read at multiple times in a single pass and get different values. Thus, these variables should
only be read once in a single pass. Rather than rely on stage activity or other complicated logic to ensure they
are read once per pass, it is best to store the value into a temporary variable at the start of execution and then
refer to that temporary variable throughout the program.

Bad Example:

IF SV_STALL_ERROR THEN (MEM1)
IF !SV_STALL_ERROR THEN (MEM2)

Good Example:

IF TRUE THEN TEMP_SV_STALL_ERROR = SV_STALL_ERROR
IF TEMP_SV_STALL_ERROR THEN (MEM1)
IF !TEMP_SV_STALL_ERROR THEN (MEM2)

Note that in the bad example, there is no guarantee that MEM1 != MEM2.

System Variable Notes

SV_DRIVE_STATUS_x* Typically used with OPTIC4 that has no external drive
fault input visible to the PLC program (GPIO4D has
INP17-20).

SV_STALL_ERROR*

SV_PC_FEEDRATE_PERCENTAGE*

SV_FSIOx

SV_M_FUNCTION Not used in any program.

SV_PC_POWER_AXIS_x

SV_MPU11_LASH_OFFSET_x

Page 110

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

SV_MPU11_ABS_POS_x

SV_MPU11_EXPECTED_POS_x

SV_PC_RIGID_TAP_SPINDLE_OFF

Note that all system variables are readable by either the PLC or CNC software. The following tables indicate
who, either the PLC or CNC software, can change the state of the Bits or Words. In some cases there are
System Variables that CNC software and the PLC program can write to and it is so noted.

CNC Software Write-Controlled System Variables

Name Type Description

1-bit Boolean System Variables (CNC Software ---> PLC)

SV_M94_M95_1-128 M Used for M-Codes that require PLC interaction like M3, M4,
M6, M7, M8, M10, M11 and custom M-Codes. They are set
and reset from M & G-code programs using M94 and M95.
These bits can also be controlled by the PLC program even
though they are in the section labeled as Read Only for the
PLC. Be aware that CNC11 has built-in default actions for
some M-codes that control the first 16 of these variables.

An example is to turn off auto coolant and spindle when not
running a program.

IF !SV_PROGRAM_RUNNING THEN RST M3, RST M4, RST
M7, RST M8.

SV_PROGRAM_RUNNING M 1 = MDI mode or a job is in progress

SV_MDI_MODE M 1 = MDI mode active

SV_PC_OVERRIDE_CONTROL_FEEDRATE
_OVERRIDE

M 1 = FeedRate Override Knob is allowed to change the
feedrate on axis motion

SV_PC_OVERRIDE_CONTROL_SPINDLE_
OVERRIDE

M 1 = Spindle Override keys or Knob change the spindle
speed commanded

SV_PC_OVERRIDE_CONTROL_FEEDHOLD M 1 = Feedhold pauses the G-Code program

SV_PC_POWER_AXIS_1-_8 M 1 = indicates if the axis is powered to hold position

SV_DRIVE_ONLINE_1-_8 M 1 = The drive for the axis is detected.

SV_LEGACY_JOG_PANEL_ONLINE M 1 = Legacy Jog Panel detected. Ex: Uniconsole-2

SV_PLC_BUS_ONLINE M 1 = Valid MPU11 PLC detected. Checked as part of Fiber
Checking PLC Program section.

SV_JOG_LINK_ONLINE M 1 = Valid Jog Panel detected as Jogboard.

SV_PLC_IO2_ONLINE M 1 = IO2 Legacy PLC detected.

SV_AXIS_VALID_1-_8 M 1 = Motor Parameters screen axis label allows motion.
Allowed labels are X, Y, Z, A, B, C, U, V, W.

SV_PC_RIGID_TAP_SPINDLE_OFF M CNC software SETs this bit to signal that the spindle should
be turned off when the rigid tap depth has been reached if

Parameter 36, bit 4 is SET, otherwise it is not needed.

This is usually not needed. It is NOT needed just because
you have a custom mfunc5.mac file. CNC software ignores

Page 111

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

custom M5s during a rigid tap. It decides which bit to turn
turn off (M3 or M4) based on the spindle direction. The only

time that this system variable is needed is as follows: If
turning off the spindle requires doing more than clearing M3
or M4. Note that CNC software will only clear one of M3 or

M4 during a rigid tap, not both.

SV_PC_KEYBOARD_KEY_1-104 M 1 = Keyboard key pressed, 0 = Keyboard key not pressed.
See Appendix C.

SV_PC_VIRTUAL_JOGPANEL_ACTIVE M Indicates whether keyboard jogging is enabled i.e. the user
has activated the keyboard (virtual) jog panel using ALT-J.
Most things besides jogging are allowed without the screen

being up by default.

SV_PC_HOME_SET M 1 = home set for all valid axes, check this to force slow jog
before homing unless Parameter 148 bit 0 is set.

SV_PC_SOFTWARE_READY M 1 = CNC software is initialized and communicating with
MPU normally
0 = CNC software exited normally or communication fault
occurred. Intended to be used in a PLC program to disable
certain functions when the CNC software is not running or
there is another fault preventing normal communications.
For example, on ATC machines, the carousel should not be
rotated if the software is not running since the CNC
software monitors the reported carousel position and saves
changes to the job file.

SV_PC_TOGGLE_RAPID_OVERRIDE M CNC software SETs this bit when the state of Rapid
Override needs to change. The PLC should RSTs this bit
after toggling Rapid Override.

SV_DOING_AUTO_TOOL_MEASURE M This bit is set by the CNC software when performing an
automatic tool measure with the TT1.

 SV_JOG_PANEL_REQUIRED M Indicates the setting of “Jog Panel Required” in the Control
Configuration Menu of CNC software.

SV_LIMIT_TRIPPED M 1 = Any configured limit switch is tripped
0 = No configured limit switches are tripped
Note: The PLC program is not required to perform any
actions when this bit is set.

SV_JOB_IN_PROGRESS M Set when CNC software is running a job or running an MDI
command, but not while at the MDI prompt waiting for input.

SV_RPM_MODE_ZERO_SPEED_1-8 M 1 = AC1 drive axis is at zero speed in RPM mode

SV_RPM_MODE_ACTIVE_1-8 M 1 = AC1 drive axis is in RPM mode

SV_?_AXIS_VALID M These nine system variables are mapped to the
SV_AXIS_VALID_x bits according to the axis labels (?)
XYZABCUVW. They are intended to be a convenience
when writing PLC programs so that they can handle axis
changes more easily.

SV_?_AXIS_DRIVE_ONLINE M These nine system variables are mapped to the
SV_DRIVE_ONLINE_x bits according to the axis labels (?)
XYZABCUVW. They are intended to be a convenience
when writing PLC programs so that they can handle axis
changes more easily.

SV_?_AXIS_FIBER_OK M These nine system variables are mapped to the bits in
SV_PC_CYCLONE_STATUS_2 according to the axis labels
(?) XYZABCUVW. They are intended to be a convenience

Page 112

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

when writing PLC programs so that they can handle axis
changes more easily.

SV_?_AXIS_POWERED M These nine system variables are mapped to the
SV_PC_POWER_AXIS_x bits according to the axis labels
(?) XYZABCUVW. They are intended to be a convenience
when writing PLC programs so that they can handle axis
changes more easily.

SV_SKIN_EVENT_1-255 M These 255 system variable bits are used to provide generic
events that can be SET/RST by skinning applications via
the CNC Skinning API. The Centroid Virtual Control Panel
(VCP) is a skinning application that uses them to
communicate the status of virtual jog panel button states,
among other things. As a convention, SV_SKIN_EVENT_1
– 50 should be mapped to the same fifty keys found on a
real hardware jog panel, i.e., SV_SKIN_EVENT_1
corresponding to Spindle+ key, and then continuing left to
right, top to bottom with SV_SKIN_EVENT_50
corresponding to the CYCLE_START key.

SV_USB_MPG_POWER M Set when the USB MPG is powered on. Note that in order
for this to be set, a state change of the USB MPG needs to
occur.

SV_ENCODER_INDEX_PULSE_1 – 21 M Current state of encoder index pulses

SV_LATCHED_ENCODER_INDEX_PULSE_
1 – 21

M Latched state of encoder index pulses. Remain set until
read.

SV_SCALE_INITIALIZED_AXIS_1 – 8 M Set when a scale is initialized (axis homed). They turn off
once an axis homing command is issued.

SV_SCALE_ENABLED_AXIS_1 – 8 M Set if scale is enabled in Scale Menu of CNC software

SV_HOME_SET_AXIS_1 – 8 M Set after initial homing and remain set even if CNC software
resets the homing state.

32-bit Integer System Variables (CNC11 ---> PLC)

SV_PC_DAC_SPINDLE_SPEED I32 The DAC spindle speed as requested by the CNC software
(value range is 0-65535)

SV_M_FUNCTION I32 Set as part of M-code execution.

SV_TOOL_NUMBER I32 Set as part of a tool change (M107), to indicate the
requested tool number. In the case of “enhanced ATC”

operation this is actually a request for a carousel bin
location. (The LDT command of XPLCCOMP is deprecated

and not used.)

SV_ATC_CAROUSEL_POSITION I32 Sent by CNC software when it first starts up or as part of an
“enhanced ATC” reset feature. (The LCP command of

XPLCCOMP is deprecated and not used.)

SV_ATC_TOOL_IN_SPINDLE I32 Sent by CNC software when it first starts up and the .job file
is parsed or as part of an “enhanced ATC” reset feature.

(The LTS command of XPLCCOMP is deprecated and not
used.)

SV_PC_FEEDRATE_PERCENTAGE I32 0-200% adjustment for axis motion control. The value is
sent by CNC software for machine parameter 78 bit 1

checking and on-screen-display. This value is not needed if
SV_PC_OVERRIDE_CONTROL_FEEDRATE_OVERRIDE

is not SET.

SV_PC_SPINDLE_OVERRIDE I32 Not currently used.

Page 113

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

SV_PC_CYCLONE_STATUS_1 I32 PLC and Drive Status Bits

Bit Function

0-20 Reserved

21 Out Fiber for PLC OK

22-31 Reserved

SV_PC_CYCLONE_STATUS_2 I32 The PLC program should check drive enables from this
word to determine if fiber4 has been broken and cause

a drive fault

Bit Function

0 Drive Axis 1

1 Drive Axis 2

2 Drive Axis 3

3 Drive Axis 4

4 Drive Axis 5

5 Drive Axis 6

6 Drive Axis 7

7 Drive Axis 8

9-31 Reserved

Page 114

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

SV_PC_MINI_PLC_ONLINE I32 Online bits for PLCADD1616 and other expansion PLC
modules.

Bit Function

0 1 = miniPLC1 is online

... ...

15 1 = miniPLC16 online

16-31 Reserved

SV_DRIVE_STATUS_1-8 I32 High Speed Drive Status word, separated by Drive type.

ALLIN1DC/DC3IOB

Bit Description

0 Current Setting Low Bit

1 Current Setting High Bit

2 High power enable - FETs
are installed to handle 15A

current setting

3 Drive master/slave – 1 =
communicating on fibers, 0

= comm. on wires

4 Aux 1 jumper state – 1 =
jumper block removed, 0 =

jumper block in place

5 Aux 2 jumper state – 1 =
jumper block removed, 0 =

jumper block in place

6 Reserved

7 Reserved

8-15 Reserved

DC1

Bit Description

0 Current Setting Low Bit

1 Current Setting High Bit

2 High power enable - FETs
are installed to handle 15A

Page 115

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

current setting

3 Reserved

4 Reserved

5 Spare jumper state – 1 =
jumper block removed, 0 =

jumper block in place

6 Plus Limit State

7 Minus Limit State

8-15 Reserved

Optic4

Bit Description

0-10 Reserved

11 Quadrature Error: Incorrect
encoder state transition

12 Direction Bit

13 Index Pulse

14 Differential error on encoder
A or B channel

15 Drive fault from 3rd party
drive (1 = Fault, or no

voltage at input)

SV_MPU11_LASH_OFFSET_0-
SV_MPU11_LASH_OFFSET_7

I32 The current lash offset

SV_FSIO_1-SV_FSIO32 I32 Fast Synchronous IO (see M300 commands in the
Operator Manual)

SV_STALL_REASON Set whenever SV_STALL_ERROR is set.
No Error = 0
position error = 1
full power without motion = 2
encoder differential error = 3
spindle slave position error = 4
OpticDirect C8 Error = 6
scale encoder differential error=15
encoder quadrature error = 16
scale encoder quadrature error = 17
standoff_error = 18
scale position error = 19
master enable turned off = 99

SV_STALL_AXIS I32 Set whenever SV_STALL_ERROR is set
It will be set to the appropriate axis of the stall error. If the

axis is not applicable then it will be set to 255.

SV_HSC_DRIVE_x_STATUS_y I32 These variables contain every bit of the status packets sent
back by AC1 drives. There are a total of 64 variables, eight
for each of the eight possible AC1 drives. Only
SV_HSC_DRIVE_x_STATUS_4 is documented here as it
contains PLC related information of greatest importance.
SV_HSC_DRIVE_x_STATUS_4 bits:

Page 116

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

bit00 FatalError
Indicates a serious error. The PLC program should monitor
this bit on all AC1 drives and treat it as an emergency stop.
This bit is cleared by the AC1 drive on the rising edge of
SV_MASTER_ENABLE, but if the condition persists, the
PLC program will not see a change. Therefore, if the
FatalError bit is still on about a second after
SV_MASTER_ENABLE has been turned back on (after a
release of E-stop), then the fault should be thrown again.
Other bits in this variable can be examined to determine the
specific reason for the FatalError, but a PLC program does
not need to handle every single error with a custom
message as the state of all these bits can be viewed in the
Log Options menu of CNC11, using the <F5> HSC function
key. Also, this information is logged in the file hsc_status.txt
and is included in a report.

bit01 Warning
Inidicates a warning condition. Other bits in this variable can
be examined to determine the specific reason for the
warning.

bit02 ErrorUVWInvalid
bit03 ErrorUVWBadTransition
bit04 ErrorUVWBadSize
bit05 EncoderOk
bit06 QuadratureError

Note that EncoderOk and QuadratureError bits are already
monitored by MPU11 and if set, will generate the
appropriate encoder differential or quadrature error
messages.

bit07 EncoderMismatch
bit08 LineVoltageOn
bit09 OvercurrrentHighSide
bit10 OvercurrentLowSide
bit11 OvervoltageMotor
bit12 OvervoltageLine
bit13 BrakeResistorMissing
bit14 BrakeIGBTOpen
bit15 MotorTemperatureSwitch
bit16 HeatsinkTemperatureSwitch
bit17 PlusLimit
bit18 MinusLimit
bit19 DriveShutdown
bit20 BrakeOnTooMuch
bit21 OvercurrentSensor
bit22 WarningDriveHot
bit23 ErrorDriveTooHot
bit24 WarningMotorHot
bit25 AccelTooGreat
bit26 ADCOffsetOk
bit27 ErrorMotorTooHot
bit28 MoveSyncRunning
bit29 StepRunning
bit30 TuneRunning
bit31 ErrorParameterChange

Page 117

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

SV_SD_DRIVE_x_STATUS I32 There are five of these variables that correspond to the
status of legacy SD drives.
Indicates a serious error. The PLC program should monitor
this bit for all drives and treat it as an emergency stop
condition. Other bits in this variable can be examined to
determine the specific cause, but it is recommended that
the PLC just echo this variable to W1-W44 so it can be
viewed using line PLC diagnostics in CNC11.

bit00 FatalErrorDetected
bit01 ADMC300Online1 (should always be 1)
bit02 ADMC300Online0 (should always be 0)
bit03 IndexPulseDetected
bit04 OvercurrentWarning
bit05 PowerOn
bit06 MoveRunning
bit07 OvervoltageWarning
bits08-15 unused
bit16 ServoDriveErrorDetected
bit17 OvervoltageDetected
bit18 UndervoltageDetected
bit19 CommutationEncoderError
bit20 OvertemperatureDetected
bit21 OvercurrentDetected
bit22 DataTrasmitInError
bit23 InvalidIndexPulse
bit24 unused
bit25 Lag (should not be reported)
bit26 PositionError (should not be reported as MPU11
monitors and reports position errors)
bit27 HighPowerNoMotion (should no be reported)
bit28 EncoderBad (MPU11 monitors)
bits29-31 unused

SV_DRIVE_TYPE_1-8 I32 The tyoe of drive connected to the axis:
0 = None
1 = Legacy DC
2 = DC3IOB
3 = SD
4 = AC1
5 = OPTIC4
6 = GPIO4D
7 = DC1
8 = ALLINONEDC
9 = Optic Direct
10 = RTK4
11 = ENCEXP
12 = OAK
13 = ACORN
14 = DRIVECOMM
15 = ECAT
16 = ENCEXP2

SV_DRIVE_VERSION_1-8 I32 The drive firmware version

SV_?_AXIS_DRIVE_STATUS I32 These nine system variables are mapped to the
SV_DRIVE_STATUS_1-8 system variables according to the
axis labels (?) XYZABCUVW. They are intended to be a

Page 118

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

convenience when writing PLC programs so that they can
handle axis changes more easily.

SV_?_AXIS_DRIVE_STATUS I32 These nine system variables are mapped to the
SV_DRIVE_TYPE_1-8 system variables according to the
axis labels (?) XYZABCUVW. They are intended to be a
convenience when writing PLC programs so that they can
handle axis changes more easily.

SV_AXIS_LABEL_1-8 I32 The uppercase ASCII character value assigned to the axis.
Common values are:
A = 65
B = 66
C = 67
N = 78
U = 85
V = 86
W = 87
X = 88
Y = 89
Z = 90

SV_SKINNING_DATA_W_1-12 I32 Generic 32-bit integer data that can be set by CNC Skinning
API functions and read by the PLC,

SV_?_AXIS_DRIVE_NUMBER I32 These nine system variables are mapped to machine
parameter 300 (Axis 1 (?) Drive Number) through machine
parameter 307 (Axis 8 (?) Drive Number). They are
intended to be a convenience when writing PLC programs
so that they can handle axis changes more easily.

SV_PC_CURRENT_WCS I32 The current work coordinate system (1-18) in effect by the
CNC software.

SV_USB_MPG_AXIS_SELECT I32 Value indicating the wireless USB MPG axis select switch
0 = Off
1-6 selected axis (X, Y, Z, 4th, 5th, 6th)

SV_USB_MPG_SCALE_SELECT I32 Value indicating the wireless USB MPG scale selector knob
1 = x1
10 = x100
100 = x100
1000 = SPIN
10000 = FEED

SV_USB_MPG_BUTTON_STATE I32 Conatins bits for wireless MPG USB button states
bit 0 = Reset (Cycle Cancel)
bit 1 = Feed Hold
bit 2 = Cycle Start
bit 3 = Jog Plus
bit 4 = Jog Minus
bit 5 = SPIN Auto/Man
bit 6 = SPIN On/Off
bit 7 = Macro 1
bit 8 = Macro 2
bit 9 = Macro 3
bit 10 = Macro 4
bit 11 = Tool Check
bit 12 = Set Zero (=0)

SV_USB_MPG_ENCODER_WHEEL I32 The MPG wheel position. This system variable counts up
and down and does not roll over.

SV_ETHER1616_ONLINE_BITS I32 The online status of the Ether1616 devices. Used in

Page 119

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

conjunction with SV_MACHINE_PARAMETER_415
(Ether1616 Configured Bits) to detect changes.

ENCODER_DIFF_BITS I32 bitmap of encoder differential errors

ENCODER_QUAD_BITS I32 bitmap of encoder quadrature errors

SV_POSITION_MODE_ERROR_AXIS_1-8 I32 Same as in CNC software PID Encoder menu

64-bit Integer System Variables

SV_MPU11_ABS_POS_0 -
SV_MPU11_ABS_POS_7

I64 The Absolute Position of the axis in encoder counts. This is
the same value that is reported to CNC software and is

viewed in PID screen as AbsPos.

SV_MPU11_EXPECTED_POS_0 -
SV_MPU11_EXPECTED_POS_7

I64 The Expected Position of the axis in encoder counts. This is
the current commanded position.

SV_STARTUP_TIME I64 A 12 decimal digit integer representing the date and time
the CNC software was started, The format is

YYMMDDHHmmSS,.

32-bit Floating-point System Variables

SV_MACHINE_PARAMETER_0-999 F32 Machine Parameter values as entered in CNC software.
Note that these are 32-bit floating point values that have

been converted from the 64-bit floating point values that are
actually maintained by the CNC software, so there may be

some loss of precision.

SV_PC_COMMANDED_SPINDLE_SPEE
D

F32 The commanded “S” value with Spindle Override factored
in. Note that Parameters 65-67 for spindle range must be

controlled in the PLC program.

SV_PC_CONFIG_MIN_SPINDLE_SPEE
D

F32 The minimum spindle speed from the control configuration.

SV_PC_CONFIG_MAX_SPINDLE_SPEE
D

F32 The maximum spindle speed from the control configuration.

SV_MEASURED_SPINDLE_SPEED F32 The measured spindle speed in RPM, taking into account
the SV_SPINDLE_MID_RANGE and

SV_SPINDLE_LOW_RANGE system variable settings.

SV_SKINNING_DATA_FW_1-11 F32 Generic 32-bit floating point data that can be set by CNC
Skinning API functions and read by the PLC,

SV_PC_MAXIMUM_CSS_SPEED F32 For Lathe, the maximum constant surface speed set by a
G50 command.

64-bit floating-point System Variables

SV_SKINNING_DATA_DFW_1-11 F64 Generic 64-bit floating point data that can be set by CNC
Skinning API functions and read by the PLC,

PLC Write-Controlled System Variables

Name Type Description

1-bit boolean system variables (MPU11 ---> PC)

SV_SPINDLE_MID_RANGE M This must be set for Rigid Tapping and display of spindle
speed to function correctly. In combination with
SV_SPINDLE_LOW_RANGE below, up to four ranges are
supported.

Page 120

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Name Type Description

SV_SPINDLE_LOW_RANGE M This must be set for Rigid Tapping and display of spindle
speed to function correctly. In combination with
SV_SPINDLE_MID_RANGE above, up to four ranges are
supported.

SV_PLC_FAULT M Obsolete. Do not use.

SV_LUBRICANT_LOW M Obsolete. Do not use.

SV_DRIVE_FAULT M Obsolete. Do not use.

SV_SPINDLE_FAULT M Obsolete. Do not use.

SV_STOP M Bit that is SET by the PLC program on a critical error or
when E-Stop is pushed to singal to the CNC software and
MPU to prevent axis motion, spindle commands and ATC
changes. The bit should be RST when E-Stop is released

and there are no other errors.

SV_PLC_OP_IN_PROGRESS M Obsolete. Do not use.

SV_PLC_FUNCTION_0 M Invalid (Do not use)

SV_PLC_FUNCTION_1 M Cycle Cancel

SV_PLC_FUNCTION_2 M Cycle Start

SV_PLC_FUNCTION_3 M Tool Check

SV_PLC_FUNCTION_4 M Select Single Block

SV_PLC_FUNCTION_5 M Select X1 Jog Mode

SV_PLC_FUNCTION_6 M Select X10 Jog Mode

SV_PLC_FUNCTION_7 M Select X100 Jog Mode

SV_PLC_FUNCTION_8 M Not Used (formally User Jog Inc Mode)

SV_PLC_FUNCTION_9 M Select Inc/Cont Jog Mode

SV_PLC_FUNCTION_10 M Select Fast/Slow Jog Mode

SV_PLC_FUNCTION_11 M Select Mpg Mode

SV_PLC_FUNCTION_12 M Axis 1 + Jog

SV_PLC_FUNCTION_13 M Axis 1 - Jog

SV_PLC_FUNCTION_14 M Axis 2 + Jog

SV_PLC_FUNCTION_15 M Axis 2 - Jog

SV_PLC_FUNCTION_16 M Axis 3 + Jog

SV_PLC_FUNCTION_17 M Axis 3 - Jog

SV_PLC_FUNCTION_18 M Axis 4 + Jog

SV_PLC_FUNCTION_19 M Axis 4 - Jog

SV_PLC_FUNCTION_20 M Axis 5 + Jog

SV_PLC_FUNCTION_21 M Axis 5 - Jog

Page 121

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Name Type Description

SV_PLC_FUNCTION_22 M Axis 6 + Jog

SV_PLC_FUNCTION_23 M Axis 6 - Jog

SV_PLC_FUNCTION_24 M Aux1

SV_PLC_FUNCTION_25 M Aux2

SV_PLC_FUNCTION_26 M Aux3

SV_PLC_FUNCTION_27 M Aux4

SV_PLC_FUNCTION_28 M Aux5

SV_PLC_FUNCTION_29 M Aux6

SV_PLC_FUNCTION_30 M Aux7

SV_PLC_FUNCTION_31 M Aux8

SV_PLC_FUNCTION_32 M Aux9

SV_PLC_FUNCTION_33 M Aux10

SV_PLC_FUNCTION_34 M Select Rapid Override

SV_PLC_FUNCTION_35 M Select Man or Auto Spindle Mode

SV_PLC_FUNCTION_36 M Do not use

SV_PLC_FUNCTION_37 M Spindle Start

SV_PLC_FUNCTION_38 M Spindle Stop

SV_PLC_FUNCTION_39 M Aux11

SV_PLC_FUNCTION_40 M Aux12

SV_PLC_FUNCTION_41 M Deprecated. Do not use

SV_PLC_FUNCTION_42 M Deprecated. Do not use

SV_PLC_FUNCTION_43 M Select Coolant Flood

SV_PLC_FUNCTION_44 M Select Coolant Mist

SV_PLC_FUNCTION_45 M Feed Hold

SV_PLC_FUNCTION_46 -
SV_PLC_FUNCTION_97

M Do not use.

SV_PLC_FUNCTION_98 M Select Spindle CCW

SV_PLC_FUNCTION_99 M Select Spindle CW

SV_PLC_FUNCTION_100 -
SV_PLC_FUNCTION_103

M Do not use.

SV_PLC_FUNCTION_104 M Coolant Auto / Manual Mode

SV_PLC_FUNCTION_105 M Do not use

SV_PLC_FUNCTION_106 M Spindle Override +

SV_PLC_FUNCTION_107 M Spindle Override -

SV_PLC_FUNCTION_108 M Select Spindle Override / 100 %

SV_PLC_FUNCTION_109 M Escape Key (sent to the PC)

SV_PLC_FUNCTION_110 M Axis 7 Jog +

SV_PLC_FUNCTION_111 M Axis 7 Jog -

SV_PLC_FUNCTION_112 M Axis 8 Jog +

Page 122

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Name Type Description

SV_PLC_FUNCTION_113 M Axis 8 Jog -

SV_PLC_FUNCTION_114-
SV_PLC_FUNCTION_127

M Unused

SV_PLC_OVERRIDE_CONTROL_FEE-
DRATE_OVERRIDE

M 1 = Feedrate can be changed from commanded value by
Feedrate Override

SV_PLC_OVERRIDE_CONTROL_SPIN-
DLE_OVERRIDE

M 1 = Spindle Speed can be changed from commanded value
by Spindle Override

SV_PLC_OVERRIDE_CONTROL_FEED-
HOLD

M 1 = Feedhold is allowed

SV_ENABLE_AXIS_1-
SV_ENABLE_AXIS_8

M Obsolete. Do not use.

SV_MASTER_ENABLE M PLC sets this bit to turn on the Master Enable to hardware
devices (drives and PLCs)

SV_STALL_ERROR M 1 = MPU11 detected an error that the PLC program should
handle. See SV_STALL_REASON and SV_STALL_AXIS for

further information on the specific cause.
PLC program should turn off all enables including the

Master Enable when this error occurs.
The PLC Program should RST this bit if the error occurred

and E-Stop is pushed in. (ie clear on E-Stop)

SV_MPG_1_ENABLED M This MPG is enabled. This bit switches between MPG mode
and Vector controlled mode for all axes in this group. When
this is enabled the MPU11 will not process motion vectors

from the PC or allow Jogging.

SV_MPG_1_WINDUP_MODE M The MPG is in windup mode. This means the MPG will
move the total distance commanded by the MPG encoder
input. This mode is typically enabled for x1 and x10 mode.

This mode should be disabled for x100 mode. When
windup mode is disabled the MPG will try to keep up, but

will go off position if the MPG encoder counts too fast.
When this happens CNC11 will display the message “MPG

moving too fast”.

SV_MPG_1_OFFSET_MODE M The MPG is in Offset Mode. The MPG movement will be
added to the current Expected Position instead of setting

the Expected Position. In this mode the MPG is
independent and is allowed to command motion while

vectors are being processed.

SV_MPG_1_PLC_MPG_MODE M The MPG is in PLC Controlled Mode. The MPG encoder
input will be read from SV_MPG_1_OFFSET instead of the

actual encoder input. The plc program can change
SV_MPG_1_OFFSET which will cause the mpg axis to

move.

SV_MPG_2_ENABLED M See SV_MPG_1_ENABLED above.

SV_MPG_2_WINDUP_MODE M See SV_MPG_1_WINDUP_MODE above.

SV_MPG_2_OFFSET_MODE M See SV_MPG_1_OFFSET_MODE above.

SV_MPG_2_PLC_MPG_MODE M See SV_MPG_1_PLC_MPG_MODE above.

SV_MPG_3_ENABLED M See SV_MPG_1_ENABLED above.

Page 123

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Name Type Description

SV_MPG_3_WINDUP_MODE M See SV_MPG_1_WINDUP_MODE above.

SV_MPG_3_OFFSET_MODE M See SV_MPG_1_OFFSET_MODE above.

SV_MPG_3_PLC_MPG_MODE M See SV_MPG_1_PLC_MPG_MODE above.

SV_TRIGGER_PLOT_DUMP M This bit is intended for internal debugging purposes. When
set, it will start a debug dump to be sent to CNC software.

After CNC software receives all the debug data, it will
launch the plot.exe program to display it. Without custom

built CNC software, the debug dump has no useful data.

SV_RESET_PLC_STATS_MIN_MAX M Resets the current Minimum/Maximum PLC executor
statistics which are displayed on the PLC diagnostic screen

(ALT-I)

SV_RESET_PLC_STATS_AVG M Resets the current Average PLC executor statistics which
are displayed on the PLC diagnostic screen (ALT-I)

SV_SPINDLE_RPM_MODE M Used for C Axis Lathe. When this bit is set, the mpu11 will
send the current value of SV_SPINDLE_DAC as the PID

output to the drive for the last axis configured as a “C axis”
When this mode is active, full power without motion and

position errors are disabled for the axis.

SV_SCALE_INHIBIT_AXIS_1-
SV_SCALE_INHIBIT_AXIS_8

M When set, scale compensation for the axis is disabled until
the bit is reset. When the scale compensation is disabled in
this manner it will undo any previous corrections. The DRO
will show the absolute position of the motor encoder when

the scale is disabled.

SV_ENABLE_IO_OVERRIDE M When set by the PLC prgram, CNC software will indirectly
allow the inversion and forcing of PLC bits through the live
PLC display (ALT-I on the main screen) by manipulating

machine parameters 911-939, which the PLC program can
use directly to set system variables that actually perform the

state forcing and inversion.

SV_RPM_MODE_DIRECTION_1-8 M Used with AC1 drives to set the direction for RPM mode.

SV_RPM_MODE_ENABLE_1-8 M Used with AC1 drives to enable RPM mode.

SV_RPM_MODE_AXIS_ENABLE_1-8 M Used with AC1 drives to enable the axis in RPM mode.

SV_DISABLE_STALL_DETECTION M When SET, will disable the detection of some stall errors,
such as position errors and full power without motion errors.

SV_PLC_SET_AXIS_n_PART_ZERO M When SET by a PLC program and the control is not running
a job and at the main screen, will request CNC software to

set the Part Zero for the axis (n = 1-8).

SV_DAC_OUTPUT_ENABLE_1-8 M When set, enables the control of the analog voltage on the
OpticDirect by setting the desired value using the

SV_DAC_OUTPUT_VALUE_1-8 system variables.

32-bit signed integer system variables (MPU11 ---> PC)

SV_PLC_FAULT_STATUS I32 Bitwise parameter of certain fault conditions:
0x00000001 DIV_BY_ZERO

0x00000002 OUT_OF_BOUNDS
0x00000004 INVALID_OPCODE
See Internal PLC Fault Checking.

SV_PLC_FAULT_ADDRESS I32 Exact address in the PLC program where the above fault
occurred. Should be monitored as above. See Internal PLC

Page 124

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Name Type Description

Fault Checking.

SV_PLC_SPINDLE_SPEED If parameter 78 is not set to display the actual spindle
speed, this value is the current spindle speed that is

displayed on the screen.

SV_STOP_REASON I32 When motion stops a reason is given and that reason is
stored here. Do not use at this time.

SV_PLC_CAROUSEL_POSITION I32 Bin position that the carousel is at. It is critical that the
Carousel not be allowed to turn unless CNC software is

running. Check the SV for Software running.

SV_PLC_FEEDRATE_KNOB I32 The feedrate knob as the PLC would have CNC11 see.

SV_PLC_SPINDLE_KNOB I32 Spindle Speed override percentage sent to the PLC

SV_SMSG_D_ARG_1 -
SV_SMSG_D_ARG_9

Reserved for future use. Do not use.

SV_PLC_DEBOUNCE_1 to _64 I32 First 240 PLC inputs debounce configuration words

SV_JOG_LINK_DEBOUNCE_1 to _32 I32 Jog Panel Input debounce configuration words

SV_LOCAL_DEBOUNCE_1 to _13 I32 MPU11 Onboard/Local Inputs Debounce configuration

SV_MPG_1_AXIS_SELECT I32 The current selected axis for the first mpg (1-8)

SV_MPG_1_MULTIPLIER I32 The mpg multiplier value normally (1, 10, 100)

SV_MPG_1_PLC_OFFSET I32 MPG Offset, for PLC controlled MPG Inputs. This allows the
PLC to control the MPG through an Analog to Digital Input

rather than an encoder. This mode is enabled when the
PLCMPGmode bit is set.

SV_MPG_2_AXIS_SELECT I32 The current selected axis for the second mpg (1-8)

SV_MPG_2_MULTIPLIER I32 The mpg multiplier value normally (1, 10, 100)

SV_MPG_2_PLC_OFFSET I32 MPG Offset, for PLC controlled MPG Inputs. This allows the
PLC to control the MPG through an Analog to Digital Input

rather than an encoder. This mode is enabled when the
PLCMPGmode bit is set.

SV_MPG_3_AXIS_SELECT I32 The current selected axis for the third mpg (1-8)

SV_MPG_3_MULTIPLIER I32 The mpg multiplier value normally (1, 10, 100)

SV_MPG_3_PLC_OFFSET I32 MPG Offset, for PLC controlled MPG Inputs. This allows the
PLC to control the MPG through an Analog to Digital Input

rather than an encoder. This mode is enabled when the
PLCMPGmode bit is set.

SV_DRIVE_CONTROL_1 to _8 I32 High Speed Drive Control word (Lower 16 Bits) see Drive
documentation

DC3IOB / ALLIN1DC Control

Bit Description

0-14 Reserved

15* Axis Enable

Page 125

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Name Type Description

DC1 Control

Bit Description

0-14 Reserved

15* Axis Enable

OPTIC4 Control

Bit Description

0-12 Reserved

13** Tach. Direction Inversion

14 Auxiliary Output

15* Axis Enable

Notes:
*MPU11 set this bit and will overwrite any attempt by the

PLC to set it.
**Set parameters 200-207 to negative values rather than

trying to change bit 13

SV_SPINDLE_DAC I32 Used for C Axis Lathe. When this bit is set, the MPU will
send the current value of SV_SPINDLE_DAC as the PID

output to the drive for the last axis configured as a “C axis”
When this mode is active, full power without motion and

position errors are disabled for the axis.

SV_NV_W1-
SV_NV_W10

I32 Nonvolatile memory.
These system variables can be used in the same manner

as other I32 variables in the PLC program. Their values are
retained even when power is off. A PLC programmer can

expect any changes to these system variables to be written
to non-volatile memory within 2ms.

SV_SYS_COMMAND I32 Setting this value to a non-zero, positive number, will cause
the CNC software to launch a process and try to execute
the Windows batch file named plc_system_command_n.bat,
where n is the number the SV_SYS_COMMAND is set to.

SV_INVERT_INP1_16_BITS
SV_INVERT_INP17_32_BITS
SV_INVERT_INP33_48_BITS
SV_INVERT_INP49_64_BITS
SV_INVERT_INP65_80_BITS

I32 The lower 16 bits of each of these system variables is used
to invert the indicated inputs, with the least significant bit
mapped to the lower INP bit and the most significant bit
mapped to the higher numbered INP.

SV_FORCE_INP1_16_BITS
SV_FORCE_INP17_32_BITS
SV_FORCE_INP33_48_BITS
SV_FORCE_INP49_64_BITS
SV_FORCE_INP65_80_BITS

I32 The lower 16 bits of each of these system variables is used
to force the state of the indicated inputs, with the least
significant bit mapped to the lower INP bit and the most
significant bit mapped to the higher numbered INP. The
input is forced on if the equivalent bit in the
SV_INVERT_INP* system variable is clear and forced off if
the equivalent bit in SV_INVERT_INP* system variable is
set.

SV_FORCE_ON_OUT1_16_BITS
SV_FORCE_ON_OUT17_32_BITS
SV_FORCE_ON_OUT33_48_BITS
SV_FORCE_ON_OUT49_64_BITS

I32 The lower 16 bits of each of these system variables is used
to force ON the indicated outputs, with the least significant
bit mapped to the lower OUT bit and the most significant bit
mapped to the higher numbered OUT bit. Note that the

Page 126

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Name Type Description

SV_FORCE_ON_OUT65_80_BITS equivalent bit in the SV_FORCE_OFF* (see below) system
variable must be clear.

SV_FORCE_OFF_OUT1_16_BITS
SV_FORCE_OFF_OUT17_32_BITS
SV_FORCE_OFF_OUT33_48_BITS
SV_FORCE_OFF_OUT49_64_BITS
SV_FORCE_OFF_OUT65_80_BITS

I32 The lower 16 bits of each of these system variables is used
to force OFF the indicated outputs, with the least significant
bit mapped to the lower OUT bit and the most significant bit
mapped to the higher numbered OUT bit. Note that the
equivalent bit in the SV_FORCE_ON* (see above) system
variable must be clear.

SV_?_AXIS_DRIVE_CONTROL I32 These nine system variables are mapped to the
SV_DRIVE_CONTROL_1-8 system variables according to the
axis labels (?) XYZABCUVW. They are intended to be a
convenience when writing PLC programs so that they can
handle axis changes more easily.

SV_FORCE_ON_MEM1_16_BITS
SV_FORCE_ON_MEM17_32_BITS
SV_FORCE_ON_MEM33_48_BITS
SV_FORCE_ON_MEM33_48_BITS
SV_FORCE_ON_MEM65_80_BITS

I32 The lower 16 bits of each of these system variables is used
to force ON the indicated memory bits, with the least
significant bit mapped to the lower MEM bit and the most
significant bit mapped to the higher numbered MEM bit.
Note that the equivalent bit in the SV_FORCE_OFF_MEM*
(see below) system variable must be clear. Note that the
forced state is implemented between PLC program passes,
i.e., if the PLC program changes a forced memory bit during
execution of a program, it will update the state of the
memory bit.

SV_FORCE_OFF_MEM1_16_BITS
SV_FORCE_OFF_MEM17_32_BITS
SV_FORCE_OFF_MEM33_48_BITS
SV_FORCE_OFF_MEM49_64_BITS
SV_FORCE_OFF_MEM65_80_BITS

I32 The lower 16 bits of each of these system variables is used
to force OFF the indicated memory bit, with the least
significant bit mapped to the lower MEM bit and the most
significant bit mapped to the higher numbered MEM bit.
Note that the equivalent bit in the SV_FORCE_ON_MEM*
(see above) system variable must be clear. Note that the
forced state is implemented between PLC program passes,
i.e., if the PLC program changes a forced memory bit during
execution of a program, it will update the state of the
memory bit.

SV_SYS_MACRO I32 Setting this system variable to a non-zero value while CNC
software is at the main menu, will cause the CNC software
to try to load and run the G-code program named
plcmacroN.mac located in the system directory. For
example, if on a Mill system, setting SV_SYS_MACRO = 3
will attempt to run the G-code file named
\cncm\system\plcmacro3.mac. This can be set to a negative
value.

SV_DAC_OUTPUT_VALUE_1-8 I32 Setting this system variable will control the analog output on
an OpticDirect, provided that the corresponding
SV_DAC_OUTPUT_ENABLE_1-8 variable is set.

32-bit floating point system variables (MPU11 ---> PC)

SV_PLC_FEEDRATE_OVERRIDE F32 The Feedrate factor (for MPU11 motion control). Values can
range from 0 to 2.0. A value of 1.0 results in no change to
the G-code programmed or Jog Rate value. Note that the
MPU11 will cap the Feedrate to the maximum set in
Machine Setup.
Care must be taken to never apply a negative value.

SV_SMSG_F_ARG_1-
SV_SMSG_F_ARG_9

F32 Reserved for future use. Do not use.

Page 127

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Name Type Description

SV_NV_FW1-
SV_NV_FW10

F32 Nonvolatile memory.
These system variables can be used in the same manner
as other F32 variables in the PLC program. Their values are
retained even when power is off. A PLC programmer can
expect any changes to these system variables to be written
to non-volatile memory within 2ms.

SV_METER_1 - 16 F32 These system variables are set by the PLC program to
values between -100.0 and 100.0 for use of the CNC
software to display as a meter in the DRO. Only the first
eight are used, the meters 9-16 are reserved for future
implementation.

SV_RPM_MODE_SPEED_REQUEST_1
-8

F32 For AC1 drives, the requested RPM speed

SV_?_AXIS_METER F32 These nine system variables are mapped to the
SV_METER_1-8 system variables according to the axis labels
(?) XYZABCUVW. They are intended to be a convenience
when writing PLC programs so that they can handle axis
changes more easily.

SV_SPINDLE_METER F32 This value is mapped to one of the SV_METER_1 – 16
system variables, in particular the one that corresponds to
the spindle axis.

Page 128

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Appendix E: PLC I/O Location

This chapter lays out the kinds of I/O available in general and specifically on the different PLC boards available.

Input Types
The Input tables in each of the manuals for these drives contain several headings that may need clarification as
to their exact purpose. The first is Input and this directly corresponds to the value used in the PLC Program.
Next, a heading called Type corresponds to the type of Input that can be wired in. Within this column there are
several labels which need to be explained. Configurable indicates the voltage required for the Input can be
customized. Typical Centroid 5, 12 and 24VDC SIP resistors can be used. 12VDC Optoisolated means that it
must be 12VDC powering the Input and that it has signal isolation to prevent electrical noise getting onto the
circuit board. 5VDC only means that 5V is the maximum signal voltage that can be wired to this input. It also
does not provide any electrical isolation. Sourcing means that the input must be connected to the Input common
to turn on. Lastly, ADC is an Analog-to-Digital Conversion. The ALLIN1DC currently is the only standard PLC that
has this functionality available for use in the PLC program, though there is also an ADD4AD4DA expansion
board that has four DAC outputs and four ADC inputs.

Output Types
The Output tables in the manuals also have similar columns including Type which again refers to the type of
Output that can be wired. The first types are Relay Outputs that may or may not be fused depending on the
specific Output. There are Single Throw and Double Throw relays. The Single Throw has two pins associated
with the output and there is continuity between them only when the Output is SET. The Double Throw has three
pins which are a so-called Output Common, Normally Open and Normally closed. There is continuity between
the Normally Closed pin and the common when the Output is RST and continuity between the Normally Open
and common when the Output is SET. The next type is a DAC Output. This is a Digital-to-Analog Converting
output. The Bit number specified defines the range of discreet values that can be commanded. Open Collector is
an output, usually limited to 5VDC that must be wired to an external relay for anything other than low current
signals. It is much safer to use a relay and another power supply than assume the output will not draw too much
current and damage the drive.

Warning: Always review the specific board manual that came with your system before changing any wiring.

ALLIN1DC
The ALLIN1DC has 16 inputs and 9 outputs that may be used in the PLC program. The MPG header has 14
Inputs and 3 outputs that can be used as General I/O in a customized program. Typically it is better to get a
PLC1616ADD card rather than using the MPG header, however. The first six inputs are dedicated to Limit switch
wiring and cannot be used for general purpose Inputs. Moreover the first two inputs are tied to the first axis, the
3rd and 4th inputs to the second axis and likewise for the third. The firmware on the drive shuts down motion in
the direction of the Input that is tripped, regardless of CNC11 software Limit Switch setup. There is also an
analog Input and Output with 12-bit resolution. For the schematic and I/O map, reference the ALLIN1DC manual
on the Dealer Support site or with the literature you received in your kit.

DC3IOB
The DC3IOB has 30 Inputs and 31 Outputs usable in the PLC program. There is one analog Output used for
Spindle control. The first six inputs are dedicated to Limit switch wiring and cannot be used for general purpose
Inputs. Moreover the first two inputs are tied to the first axis, the 3rd and 4th inputs to the second axis and
likewise for the third. The firmware on the drive shuts down motion in the direction of the Input that is tripped,
regardless of CNC11 software Limit Switch setup. For the schematic and I/O map, reference the DC3IOB
manual on the Dealer Support site or with the literature you received in your kit.

Page 129

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

http://www.centroidcnc.com/dealersupport/tch_manuals_installation.php
http://www.centroidcnc.com/dealersupport/tch_manuals_installation.php

GPIO4D
The DC3IOB has 30 Inputs and 31 Outputs usable in the PLC program. There is one analog Output used for
Spindle control and four analog Outputs that are not PLC accessible that are used for 3rd party drive control. The
first six Inputs are typically dedicated to Limit switch wiring, but can be used for general purpose Inputs. Inputs
and Outputs 17-20 are dedicated to the axis enable and fault inputs respectively. For the schematic and I/O map,
reference the DC3IOB manual on the Dealer Support site or with the literature you received in your kit.

PLC Expansion
All of the PLCs in this chapter can expand the Inputs and Outputs with miniPLC expansion boards. There are
differing numbers of available ports so be sure to check the board manual to determine the total I/O range. There
are 16 Debouncable Input and Output slots each capable of controlling 16 individual I/O for each board type.
Each new board starts at a multiple of 16. There are 32 non-Debouncable Input and Output slots with 16
controllable bits which may be grouped as individual I/O or combined to produce one DAC. The slot numbering
starts at 0 and goes to 47.

Once the boards are plugged into the PLC and powered as directed by the main PLC board's manual, power on
the system and look in the mpu_info.txt file in the cncm or cnct directory. This gives a breakdown of the Inputs
and Outputs and what board is associated with them.

The order that the I/O appears is directly related to which ADD port it is plugged into. ADD1 is first and ADD4 is
last. Depending on which is the master PLC the ADD boards come in on the next available slot.

See the individual board manuals for more in-depth documentation of PLC Expansion with examples. MiniPLC
devices must be plugged in when power is off on the drive to which they are connecting.

This table shows what slot maps to what Input Range. To figure out where the I/O should start for a certain slot
that is not shown here, multiply the slot number by 16 and add 1 to get the starting Input or Output number. Add
15 to that number to get the last number in the slot.

Slot Number Input/Output Numbers

0 1-16

1 17-32

2 33-48

4 65-80

14 225-240

15 241-256

20 321-336

47 753-768

ALLIN1DC
The expansion for the ALLIN1DC starts at Slot 1 and 16 because the onboard I/O take up the first slot of
Debounced and non-Debounced I/O.

DC3IOB
The expansion for the DC3IOB starts at Slots 2 and 15 for the Inputs and Slots 4 and 15 for the Outputs.

GPIO4D
The expansion for the GPIO4D starts at Slots 2 and 15 for the Inputs and Slots 2 and 20 for the Outputs.

Page 130

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

http://www.centroidcnc.com/dealersupport/tch_manuals_installation.php

Legacy IO2 (PLCIO2, RTK3) and Legacy RTK2 (RTK2, PLC5/15, PLC3/3)
Since CNC11 v3.10, there is support for programming legacy PLCs. To program a legacy PLC with an MPU11,
the MPU11 must be fitted with the LEGACYADD daughter card, and the Control Configuration PLC type set to
“IO2” or “RTK2”.

For PLCIO2 and RTK3, INP59-INP62 have been moved to INP34-INP37 and OUT59-OUT62 have been moved
to OUT49-OUT52.

Page 131

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Appendix F: G/M-Code User/System Variable

This table is copied as a reference from Chapter 11 of the CNC11 User's Manual. In cases of discrepancy the
User's Manual version shall be the final word. 50000 and on refer to the same things as are used in the PLC
program, which is why this table is included.

Index Description Returns R/W
1-3 Macro arguments A-C

The floating point value if
defined by a G65 call, 0.0
otherwise.

These can be used as private,
local variables in any program
or subprogram except in
custom macro M functions,
where they are passed by
reference. (See examples.)

R/W
4-6 Macro arguments I-K (1st set) R/W
7-9 Macro arguments D-F or 2nd set of I-K R/W
10 3rd I (G is invalid) R/W
11 Macro argument H or 3rd J R/W
12 3rd K (L is invalid) R/W
13 Macro argument M or 4th I R/W
14 4th J (N is invalid) R/W
15 4th K (O is invalid) R/W
16 5th I (P is invalid) R/W
17-18 Macro argument Q-R or 5th J-K R/W
19-21 Macro arguments R-T or 6th set of I-K R/W
22-24 Macro arguments U-W or 7th set of I-K R/W
25-27 Macro arguments X-Z or 8th set of I-K R/W
28-30 9th set of I-K R/W
31-33 10th set of I-K R/W

100 - 149 User variables
Floating-point value. Initialized
to 0.0 at start of job processing R/W

150 – 159 Nonvolatile user variables Floating-point value saved in
cncm.job file.

R/W

300-399 User string variables. These variables retain their
values until the CNC software is exited

String Literal R/W

2400, 2401-2418 Active WCS, WCS #1-18 CSR angles

Floating point value

R/W
2500, 2501-2518 Active WCS, WCS #1-18 Axis 1 values R/W
2600, 2601-2618 Active WCS, WCS #1-18 Axis 2 values R/W
2700, 2701-2718 Active WCS, WCS #1-18 Axis 3 values R/W
2800, 2801-2818 Active WCS, WCS #1-18 Axis 4 values R/W
2900, 2901-2918 Active WCS, WCS #1-18 Axis 5 values R/W
3000, 3001-3018 Active WCS, WCS #1-18 Axis 6 values R/W
3100, 3101-3118 Active WCS, WCS #1-18 Axis 7 values R/W
3200, 3201-3218 Active WCS, WCS #1-18 Axis 8 values R/W
3901 Parts Cut (Part #) R/W
3902 Parts Required (Part Cnt) R/W
4001 Move mode 0.0 (rapid) or 1.0 (feed) R
4003 Positioning mode 90.0 (abs) or 91.0 (inc) R
4006 Units of measure 20.0 (inches) or 21.0 (metric) R
4014 WCS 54.0-71.0 (WCS#1-18) R
4109 Feedrate (F)

Floating point value
R

4119 Spindle Speed (S) R
4120 Tool Number (T) R
4121 Current height offset number (H) R
4122 Current diameter offset number (D, mill only) R
4201 Job processing state 0 = normal, 1 = graph R
4202 Search mode (0 = search mode off) 0 = search mode off R
5021-5028 Machine Position (X=5021, Y=5022, etc.) Floating point value R
5041-5048 Current Position (X=5041, Y=5042, etc.) R
9000-9399 Parameter values 0 – 399 See Chapter 14 R/W

Page 132

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

9900-9999 Parameter values 900-999
10000 Mill: Height offset amount, active H Floating point value R/W
10001-10200 Mill: Height offset amount, H001 – H200 Floating point value R/W
11000 Mill: Diameter offset amount, active D Floating point value R/W
11001-11200 Mill: Diameter offset amount, D001 – D200 Floating point value R/W
12000 Mill: Tool H number, active tool (T) 0 - 200 R/W
12001-12200 Mill: Tool H number, tools 1 - 200 0 - 200 R/W
13000 Mill: Tool D number, active tool (T) 0 - 200 R/W
13001-13200 Mill: Tool D number, tools 1 - 200 0 - 200 R/W
14000 Mill: Tool coolant, active tool (T) 7, 8, 9 R/W
14001-14200 Mill: Tool coolant, tools 1 – 200 7, 8, 9 R/W
15000 Mill: Tool spindle direction, active tool (T) 3, 4, 5 R/W
15001-15200 Mill: Tool spindle direction, tools 1 - 200 3, 4, 5 R/W
16000 Mill: Tool spindle speed, active tool (T) Floating point value R/W
16001-16200 Mill: Tool spindle speed, tools 1 - 200 Floating point value R/W
17000 Mill: Tool bin number, active tool (T) Floating point value R/W
17001-17200 Mill: Tool bin number, tools 1 - 200 Floating point value R/W
18000 Mill: Tool putback, active tool (T) Floating point value R/W
18001-18200 Mill: Tool putback, tools 1 – 200 Floating point value R/W
20001-20008 max_rate for axes 1-8 R
20101-20108 label for axes 1-8 R
20201-20208 slow_jog for axes 1-8 R
20301-20308 fast_jog for axes 1-8 R
20401-20408 screw_pitch for axes 1-8 R/W
20501-20508 lash_comp for axes 1-8 R
20601-20608 counts_per_unit for axes 1-8 R
20701-20708 accel_time for axes 1-8 R
20801-20808 deadstart_velocity for axes 1-8 R
20901-20908 delta_vmax for axes 1-8 R
21001-21008 counts_per_turn for axes 1-8 R
21101-21108 minus_limit for axes 1-8 R
21201-21208 plus_limit for axes 1-8 R
21301-21308 minus_home for axes 1-8 R
21401-21408 plus_home for axes 1-8 R
21501-21508 reversed for axes 1-8 R
21601-21608 laser_comp for axes 1-8 R
21701-21708 proportional for axes 1-8 R
21801-21808 integration_limit for axes 1-8 R
21901-21908 kg for axes 1-8 R
22001-22008 integral for axes 1-8 R
22101-22108 kv1 for axes 1-8 R
22201-22208 derivative for axes 1-8 R
22301-22308 ka for axes 1-8 R
22401-22408 num_motor_poles for axes 1-8 R
22501-22508 drive_current for axes 1-8 R
22601-22608 drive_offset_angle for axes 1-8 R
22701-22708 pwm_kp for axes 1-8 R
22801-22808 pwm_ki for axes 1-8 R
22901-22908 pwm_kd for axes 1-8 R
23001-23008 abrupt_kp for axes 1-8 R
23101-23108 feed_forward_kp for axes 1-8 R
23201-23208 max_error (PID) for axes 1-8 R
23301-23308 min_error (PID) for axes 1-8 R
23401-23408 at_index_pulse for axes 1-8 R
23501-23508 travel_minus for axes 1-8 R/W
23601-23608 travel_plus for axes 1-8 R/W
23701-23708 axis_home_set for axes 1-8 R

Page 133

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

23801-23808 abs_position (in encoder counts) for axes 1-8 R
23901-23908 PID_out for axes 1-8 R
24001-24008 reference set for axes 1-8 R
24101-24108 Axis reference value for axes 1-8 R
24201-24208 tilt table level offsets for axes 1-8 R
24301-24308 dsp positions for axes 1-8 R
24401-24408 abs_position (same as 23801-23808)
24501-24508 dsp position in local coordinates
24601-24608 Local probing +limit position
24701-24708 Local probing -limit position
24801-24808 Probe stylus compensation amount
24901-24908 Servo controlled axis indicator
25000 DRO_display_units R
25001 default_units_of_measure R
25002 PLC_type R
25003 console_type R
25004 jog_panel_optional R
25005 min_spin_high R
25006 max_spin_high R
25007 home_at_powerup R
25008 screen_blank_time R

25009
Displayed / Calculated spindle speed. If parameter
178 =1 and spindle encoder is mounted.

R

25010 current spindle position (in counts) R
25011 dsp_time (in seconds) R
25012 time (in seconds) R
25013 clear max/min PID errors R
25014 software type (Mill/Lathe) R
25015 feedrate override R
25016 spindle override R

25017 OS
Windows/LINUX = 2;
other OS = 1.0

R

25018 CNC series number (11 for CNC11)
25019 Software version number
25020 Software Beta revision number
25021 Digitizing boundary hit 1 = hit, 0 = no hit
25022 Last M115/116/125/126 probe trip 1 = tripped
26001-26008 Dsp mechanical machine positions
26101-26108 Dsp mecanical local positions
26201-26208 Local +travel limit positions
26301-26308 Local -travel limit positions
26401-26404 Return Point 1 – 4 Axis 1 Values
26501-26504 Return Point 1 – 4 Axis 2 Values
26601-26604 Return Point 1 – 4 Axis 3 Values
26701-26704 Return Point 1 – 4 Axis 4 Values
26801-26804 Return Point 1 – 4 Axis 5 Values
26901-26904 Return Point 1 – 4 Axis 6 Values
27001-27004 Return Point 1 – 4 Axis 7 Values
27101-27104 Return Point 1 – 4 Axis 8 Values
29000-31999 User variables. These variables retain their values

until the CNC software is exited.
Floating point value R/W

50001-51312 PLC Inputs 1-1312 Jog Panel is on INP1057-1312 R
60001-61312 PLC Outputs 1-1312 Jog Panel is on OUT1057-

1312
R

70001-71024 PLC Memory Bits 1-1024 R
80001-89999 Reserved R
90001-90128 Timer 1-128 status bits R

Page 134

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

91001-91064 Reserved R
92001-92064 Reserved R
93001-93256 Stage 1-256 status bits R
94001-94256 Fast Stage 1-256 status bits R
95001-95256 Reserved R
96001-96044 W1-W44 (32-bit signed integers) R
97001-97022* DW1-DW22 (64-bit signed integers) R
98001-98044 FW1-FW44 (32-bit floats) R
99001-99022 DFW1-DFW22 (64-bit floats) R
* Since user or system variables are turned into (double) floating point values when referenced in an M- or G-
code program, the 64-bit integer values lose precision when they exceed 253 (9,007,199,254,740,992).

Page 135

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Appendix G: What's New in CNC11

This chapter covers major differences between CNC10 PLC programs and CNC11/12 PLC programs.

There is Only One PLC Program
In CNC11 there is only one PLC program source file and there is a new compiler for that program. The new
compiler is called mpucomp. The program should be compiled in the cncm or cnct directory which is how CNC10
PLC programs are complied as well. Because everything is taken care of in one file, there is no longer the
confusion of what happens in what file, however the file does tend to be much larger than in CNC10 due to the
requirement handed to the PLC program for taking care of many basic operations. Essentially, if the PLC
program does not tell CNC11 about something I/O related, it does not know about it, period.

The PLC Program has the Final Word
CNC11 was designed to allow the PLC program to have the final say in all things that affect motion and I/O. The
exception is that the PLC program cannot enable the motors, only alarm if there is a fault. Feedrate Override is a
good example of this paradigm. The PLC program reads the Feedrate knob and tells CNC11 what it found, then
CNC11 passes down what it thinks the feedrate override value should be for Parameter 78 compliance. Again
the PLC program can change the value before sending it to the Motion Controller, though typically this is not
done because it can break intended functionality.

Spindle Speed DAC Command
In CNC10 the Spindle Gear range was taken care of before the analog voltage was sent out by software. In
CNC11 the S command spindle speed is sent down exactly as entered in G-Code and the PLC program must
deal with the DAC output and tell CNC11 what it sent out.

Direct Control of and Responsibility for Jogging
In CNC11 the PLC program sees every Keyboard Key and Jog Panel Key press and must tell CNC11 that it has
occurred. For example, this allows the PLC program to do such things as wait for a jog key to be pushed for
some time before allowing motion or not reporting that the key has not been pushed until some other condition is
met.

Compiler/Language Differences
The following sections represent the differences between CNC10 and CNC11 PLC Programming paradigms and
keywords.

PLC Inputs and Outputs
In CNC11 all inputs and outputs are only physical inputs and outputs. Inputs can only be read or inverted by the
PLC program. The M94/M95 input bits, Spindle Range input bits, and status outputs from CNC10, for example,
are now System Variables.

Green == 1 == closed == SET
Any Bit Variable in CNC11 is Green on the PLC Diagnostic screen if it is SET or closed and Red otherwise. This
is true for Normally Closed or Normally Open Variables.

Page 136

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Keywords Removed
In CNC10 there were several keywords (LDT, LTS, LMT, LCP) which have been removed in CNC11. They are all
replaced by System Variables.

Timers
Timer units in CNC10 were 10 ms increments, but now in CNC11 the units are 1 ms This means that counting to
1000 in CNC10 takes 10 seconds whereas in CNC11 it would take 1 second.

Stages
In CNC11 when a Stage is reset all the variables inside retain their value, whereas in CNC10 all the variables
are reset. Keep this in mind so that when a Jump is called or the Stage is reset manually, variables that you want
off should be turned off explicitly before leaving the Stage. Be aware especially of One-Shots because in CNC10
when Jumping from one Stage to another all Coiled Variables are turned off whereas in CNC11 they are not.
Read more on Stages in CNC11 here.

PLC Program Should Detect All Faults
In CNC10 PLC, Drive. Lube and Spindle Faults were detected by looking at what has become SV_STOP in
CNC11 and printing the correct message based on several conditions. This is not allowed by convention in
CNC11. The PLC programmer should take care of these errors with the PLC Messaging functionality.

Page 137

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Appendix H: Definitions of Unobvious Words

Bit
A Binary piece of information that can be on or off. For example, Inputs are Bits.

Integer Number
A positive or negative whole number. Examples include 15, -10, 0 and 1309921.

Floating-point Number
A positive or negative number with fractional components expressed to the right of a decimal point. Examples
include 2.1453, -15.2, 0.0, and 104.999999.

Range
The span of numbers that can be represented by a variable.

Precision
A measure of the number of bits a variable can express. This directly relates to how big a number an integer
variable can represent and how precise a number a floating-point variable can represent. A more precise (higher
bit count) floating-point number is less prone to round-off error when comparing very large numbers with very
small (ex: 1454394783237.35 – 0.00000001). More bits means longer processing time, so unless extreme
accuracy is needed the 32-bit version of variables should be used.

Data Type
A classification for variables that defines what kind of information they can hold and the range of values they can
represent. Further explanation for all the available data types can be found here.

Define/Declare
Create an easier to understand identifier for any data type. These are conveniences for the programmer to allow
easier understanding of logic in a PLC program. Data types can be set or checked directly, but a warning is
issued by the compiler because it is considered bad practice and can cause confusion. Examples are:

Estop IS INP11 ;input 11 on DC systems is typically E-Stop

Shift_Key IS SV_PC_KEYBOARD_KEY_74 ;pushing the shift key results in this System
 ;Variable being set high.

Variable
Any of the data types or definitions of data types used in the PLC program that can change its value while
CNC11 and the PLC program is running. Examples include inputs, outputs, stages, renamed inputs by definition,
etc.

Page 138

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

Constant
Any literal number or definition of a number. Typically definitions of constants are written in all caps to
differentiate from variables. Examples include:

10

2.5

ARM_FAULT_CODE IS 2561

Page 139

documents\cnc12_PLC_programming_manual\ cnc12_PLC_programming_manual_rev7.odt 7-18-23 Centroid © 2022-23

	Centroid CNC PLC and CNC functions Programming Manual
	Conventions Used in this Manual
	Compiling a PLC Program
	PLC Program Statistics

	Language
	Programming Conventions
	Defining Variables
	Data Types
	Important Note
	Constant Definitions
	Input – INP
	Output – OUT
	Memory Bit – MEM
	Word – 32-bit – W
	Double Word – 64-bit – DW
	Floating-point Word – 32-bit – FW
	Double-Floating-point Word – 64-bit – DFW
	Timer – 32-bit – T
	One-Shot – PD
	Stage – STG
	Fast Stage – FSTG
	CNC to MPU System Variable – SV_*
	PLC to CNC System Variable – SV_*

	Keywords
	Defining variables – IS
	Conditional Statement – IF/THEN
	Print Message – MSG
	plcmsg.txt

	System Variables – SV_...
	Data Type Name
	Indexes – Data Type[Data Type or Constant]
	Range Selection – '..'
	DUMP

	Operators
	Assignment – =
	Set – SET
	Reset – RST
	Output Coil – ()
	Jump – JMP
	Basic Math Operators – *, , +, -, %
	Relational Operators – <, >, <=, >=, !=, ==
	Logical Operators – !,&&, ||, XOR or ^
	Convert to Word – BTW
	Convert to Binary – WTB
	Convert to Binary Coded Decimal – BCD
	Convert from Binary Coded Decimal – BIN
	Set or Reset a Bit in a Word – BITSET / BITRST
	Check if a Bit is Set in a Word – BITTST
	Left / Right Shift Bits in a Word – LSHIFT/RSHIFT
	Trigonometric Functions – SIN, ASIN, COS, ACOS, TAN, ATAN2
	Square Root – SQRT
	Raise Number to a Power – POW
	Absolute value – ABS

	Standard PLC Program Layout
	Defining Variables
	Initial-Condition Setup
	Internal PLC Fault and Software Running Checking
	PLC Fault Status
	Software Ready
	Checking PLC Fault and Software Ready

	Jog Panel and Keyboard Jogging
	Axis Enable
	Fiber/Wire Connection Checking
	Drive and PLCBus Checking
	PLCBus Checking only
	MiniPLCBus Checking

	LubeTimers
	Lube Pump Internal Timer
	Lube Pump External Timer

	Feedrate Override
	Spindle Functionality
	Spindle DAC Output
	Spindle Gear Ranges

	MPG Operation
	Coolant Control

	Probe Protection

	PLC Optional Sections
	Debounce or Invert Inputs
	Example Input Debounce Setup Program

	Setting Inputs High or Low for Testing

	Compiler Errors
	Warnings
	Already Defined
	Direct PLC Reference

	General Errors
	Malformed Command Line
	Unrecognized Command Line Option
	Error Opening File

	Syntax Errors
	Compilation Failed
	Too Many Errors
	Undefined Label
	[THEN, Word Type, Stage, Output, Parenthesis] expected
	End Of File Expected
	[Data Type] Out of Bounds
	Invalid Action
	Rung Expected IF
	Rung Expected THEN
	JMP Expected STG or FSTG
	System Variable is Read-Only
	MSG Expected Word Reference
	SMSG Expected String Reference
	BCD/BIN Expected Word Reference
	BCD/BIN Cannot Use Bracketed Reference
	WTB Expected Word Reference
	WTB Expected OUT/MEM Reference
	WTB Number of Bits Must be 1-32
	BTW Expected Word Reference
	BTW Expected INP/OUT/MEM Reference
	BTW Number of Bits Must be 1-32
	BITSET/RST Bit Must be 0-31
	BITSET/RST Expected an Integer Value
	BITSET/RST Word Indexing Not Allowed
	BITSET/RST Expected Word Reference
	BITTST MEM Indexing Not Allowed
	BITTST Expected MEM
	BITTST Expected Word Reference
	BITTST Bit Must be 0-31
	BITTST Expected Integer Value
	BITTST Word Indexing Not Allowed
	LSHIFT/RSHIFT Bit Must be 0-31
	LSHIFT/RSHIFT Expected Integer Value
	LSHIFT/RSHIFT Word Indexing Not Allowed
	LSHIFT/RSHIFT Expected Word Reference
	Constant Integer Expression Label Not Found
	Constant Integer Expression Expected Right Parenthesis
	Constant Integer Factor Expected
	Constant Integer Expression Label Does Not Reference an Integer
	Constant Integer Expression Label not Found
	Relational Operator Expected
	System Variable Bits Cannot be Used With '..'
	Range Extension Expected OUT/MEM/STG/FSTG/T
	Range Error. End is Before Start
	SET/RST Expected OUT/MEM/STG/FSTG/T/Modifiable SV
	Coil Expected PD/OUT/MEM/Modifiable SV
	Expected Right Bracket
	Expected Left Bracket
	Bad Definition
	Number Expected Right Parenthesis
	Numerical Factor Expected Right Parenthesis
	Numerical Factor Expected Left Parenthesis
	ATAN2/POW Expected Right Parenthesis
	ATAN2/POW Expected Comma
	ATAN2/POW Expected Left Parenthesis
	Expected Right Parenthesis
	Boolean Factor Expected Right Parenthesis
	Assignment Error

	Application Examples
	Toggle an Output Every Second
	Aux Key Jogging
	Aux Key Override of M-Code
	Wait One Second Before Jogging on Key Press
	Interpret Enter Key as Cycle Start in MDI*
	Count Machine On Time

	Custom M-Codes
	Using M94/M95 Bits
	Using One M94/M95 Bit and a Parameter
	Customizing Standard M-Codes
	Automatic Spindle On/Off – M3/M4

	Troubleshooting and Changing PLC Programs
	Write Down and Think Through Changes to the Program
	PLC Diagnostic Screen
	PLC Bit-State Dump
	DUMP
	Echo to a Memory Bit
	Use Stages
	Communication In/Out Faults
	DriveBus

	PLCBus

	Appendix A: Example PLC program
	ALLIN1DC DC system example

	Appendix B: Jog Panel Mapping
	JogPanel Inputs and Outputs

	Appendix C: Keyboard Jog Mapping
	Notes on Keyboard Jogging
	Keyboard Key Numbering Table

	Appendix D: System Variables
	System Variable Types
	Notes on Certain System Variables
	Externally Read System Variables
	Bad Example:
	Good Example:

	Externally Written System Variables
	Bad Example:
	Good Example:

	CNC Software Write-Controlled System Variables
	PLC Write-Controlled System Variables

	Appendix E: PLC I/O Location
	Input Types
	Output Types
	ALLIN1DC
	DC3IOB
	GPIO4D
	PLC Expansion
	ALLIN1DC
	DC3IOB
	GPIO4D
	Legacy IO2 (PLCIO2, RTK3) and Legacy RTK2 (RTK2, PLC5/15, PLC3/3)

	Appendix F: G/M-Code User/System Variable
	Appendix G: What's New in CNC11
	There is Only One PLC Program
	The PLC Program has the Final Word
	Spindle Speed DAC Command
	Direct Control of and Responsibility for Jogging
	Compiler/Language Differences
	PLC Inputs and Outputs
	Green == 1 == closed == SET
	Keywords Removed
	Timers
	Stages
	PLC Program Should Detect All Faults

	Appendix H: Definitions of Unobvious Words
	Bit
	Integer Number
	Floating-point Number
	Range
	Precision
	Data Type
	Define/Declare
	Variable
	Constant

